【題目】是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn),日均值在微克/立方米以下,空氣質(zhì)量為一級;在微克應(yīng)立方米微克立方米之間,空氣質(zhì)量為二級:在微克/立方米以上,空氣質(zhì)量為超標(biāo).從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機(jī)地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:

日均值

(微克/立方米)

頻數(shù)(天)

1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出天,求恰有天空氣質(zhì)量達(dá)到一級的概率;

2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列.

【答案】1;(2)分布列見解析.

【解析】

1)由表格可知:這天的日均值監(jiān)測數(shù)據(jù)中,只有天達(dá)到一級,然后利用組合計數(shù)原理與古典概型的概率公式可計算出所求事件的概率;

2)由題意可知,隨機(jī)變量的可能取值有、、、,然后利用超幾何分布即可得出隨機(jī)變量的分布列.

1)由表格可知:這天的日均值監(jiān)測數(shù)據(jù)中,只有天達(dá)到一級.

隨機(jī)抽取天,恰有天空氣質(zhì)量達(dá)到一級的概率為;

2)由題意可知,隨機(jī)變量的可能取值有、,

,,.

因此,隨機(jī)變量的分布列如下表所示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細(xì)沙全部在上部容器中,細(xì)通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時高度為圓錐高度的細(xì)管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒

2細(xì)全部漏入下部,恰好堆成一蓋沙漏底的圓錐形沙,求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓過點,,為橢圓的左、右焦點,離心率為,圓的直徑為.

1)求橢圓及圓的方程;

2)設(shè)直線與圓相切于第一象限內(nèi)的點.

①若直線與橢圓有且只有一個公共點,求點的坐標(biāo);

②若直線與橢圓交于,兩點,且的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是曲線上的動點,延長是坐標(biāo)原點)到,使得,點的軌跡為曲線

1)求曲線的方程;

2)若點分別是曲線的左、右焦點,求的取值范圍;

3)過點且不垂直軸的直線與曲線交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點為,,長軸端點為,為橢圓中心,,斜率為的直線與橢圓交于不同的兩點,這兩點在軸上的射影恰好是橢圓的兩個焦點.

1)求橢圓的方程;

2)若拋物線上存在兩個點,,橢圓上存在兩個點,,滿足,,三點共線,,三點共線,且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點,.

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點N,使得直線平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,圓內(nèi)一條過點的動弦(與軸不重合),過點的平行線交于點.

1)求出點的軌跡方程;

2)若過點的直線的軌跡方程于不同兩點,為坐標(biāo)原點,且,點為橢圓上一點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 若不等式對任意上恒成立,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過定點的直線交橢圓兩點,連接并延長交,求證:.

查看答案和解析>>

同步練習(xí)冊答案