16.已知函數(shù)f(x)=$\frac{{e}^{x}}{x}$-alnx-$\frac{a}{x}$(a∈R).
(1)當(dāng)a=1時(shí),求f(x)在(1,f(1))處的切線方程;
(2)當(dāng)x>1時(shí),f(x)>e-a,求實(shí)數(shù)a的取值范圍.

分析 (1)求導(dǎo)數(shù),確定切線的斜率,即可求f(x)在(1,f(1))處的切線方程;
(2)當(dāng)x>1時(shí),f(x)>e-a,求導(dǎo)數(shù),分類討論,即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)當(dāng)a=1時(shí),f′(x)=$\frac{({e}^{x}-1)(x-1)}{{x}^{2}}$,f(1)=e-1,f′(1)=0,
∴f(x)在(1,f(1))處的切線方程為y=e-1;
(2)f′(x)=$\frac{({e}^{x}-1)(x-a)}{{x}^{2}}$,
a≤1,函數(shù)在(0,+∞)上單調(diào)遞增,∵f(x)>e-a,∴f(x)>f(1)=e-a,成立;
a>1時(shí),函數(shù)在(1,a)上單調(diào)遞減,(a,+∞)上單調(diào)遞增,x=a時(shí),函數(shù)取得最小值,
∵f(x)>e-a,∴$\frac{{e}^{a}}{a}-alna-1>e-a$,不成立,
綜上所述,a≤1.

點(diǎn)評 本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖相同,其上部分是半圓,下部分是邊長為2的正方形;俯視圖是邊長為2的正方形及其外接圓.則該幾何體的體積為( 。
A.$4+\frac{2π}{3}$B.$4+\frac{{2\sqrt{2}π}}{3}$C.$8+\frac{{4\sqrt{2}π}}{3}$D.$8+\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)$f(x)=\left\{\begin{array}{l}cosx,x≤a\\ \frac{1}{x},x>a\end{array}\right.$的值域?yàn)閇-1,1],則實(shí)數(shù)a的取值范圍是( 。
A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計(jì)算下列各式:
(1)已知tanα=2,求$\frac{cosα+sinα}{cosα-sinα}$值;
(2)化簡f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{π}{2}-α)tan(π-α)}}{tan(π+α)sin(π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合U={x|1<x<5,x∈N*},集合A={2,3},則∁UA={4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知M為平面內(nèi)一動點(diǎn),設(shè)命題甲:存在兩個(gè)定點(diǎn)F1,F(xiàn)2使得||MF1|-|MF2||是定值,命題乙:M的軌跡是雙曲線,則命題甲是命題乙的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知動圓P過點(diǎn)A(2,0),且在y軸上截得的弦長為4.
(1)求動圓圓心P的軌跡C的方程;
(2)設(shè)A(x1,y1),B(x2,y2)是曲線C上兩個(gè)動點(diǎn),其中x1≠x2,且x1+x2=4,線段AB的垂直平分線l與x軸相交于點(diǎn)Q,求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知邊長為1的正方形ABCD位于第一象限,且頂點(diǎn)A,D分別在x,y的正半軸上(含原點(diǎn)O)滑動,則|$\overrightarrow{OB}$+$\overrightarrow{OC}$|的最大值是( 。
A.1B.2C.3D.$\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊答案