(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的 取值范圍。
(1)既不是奇函數(shù)也不是偶函數(shù).
(2)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分16分)
已知函數(shù)(∈R且),.
(Ⅰ)若,且函數(shù)的值域?yàn)閇0, +),求的解析式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)x∈[-2 , 2 ]時(shí),是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè),, 且是偶函數(shù),判斷能否大于零?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知函數(shù),存在實(shí)數(shù)滿(mǎn)足下列條件:
①;②;③
(1)證明:;
(2)求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)若實(shí)數(shù)、、滿(mǎn)足,則稱(chēng)比接近.
(1)若比3接近0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個(gè)值.寫(xiě)出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)镽,對(duì)任意,均有
,且對(duì)任意都有。
(1)試證明:函數(shù)在R上是單調(diào)函數(shù);
(2)判斷的奇偶性,并證明。
(3)解不等式。
(4)試求函數(shù)在上的值域;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
設(shè),函數(shù).
(Ⅰ)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)在上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知定義域?yàn)镽的函數(shù)為奇函數(shù),且滿(mǎn)足,當(dāng)x∈[0,1]時(shí),.
(1)求在[-1,0)上的解析式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)已知函數(shù),(1)求函數(shù)的定義域;(2)當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一元二次方程的一個(gè)根在-2與-1之間,另一個(gè)根在1與2之間,試求點(diǎn)的軌跡及的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com