9.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若an=$\frac{1}{n(n+1)}$,則S4=$\frac{4}{5}$.

分析 an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項(xiàng)求和”方法即可得出.

解答 解:∵an=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴S4=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{5})$=1-$\frac{1}{5}$=$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法、數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知|$\overrightarrow a}$|=|${\overrightarrow b}$|=|${\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且f(x)=f′($\frac{π}{6}$)cosx+sinx,則f′($\frac{π}{3}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知全集U=R,集合A={x|(x-1)(x+3)≥0},集合B={x|($\frac{1}{3}$)x<9},則(∁UA)∪B=( 。
A.(-2,1)B.(-3,+∞)C.(-∞,-3)∪(-2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知直線l與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1交于A、B兩點(diǎn),現(xiàn)取AB的中點(diǎn)M在第一象限,并且在拋物線y2=4x上,M到拋物線焦點(diǎn)的距離為2,則直線l的斜率為( 。
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知θ∈(0,$\frac{π}{4}$),且sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,則$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在區(qū)間[-$\frac{π}{2}$,$\frac{π}{6}$]上隨機(jī)取一個(gè)數(shù)x,則(sinx-cosx)∈[-$\sqrt{2}$,-1]的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知點(diǎn)A是拋物線y=$\frac{1}{4}$x2的對(duì)稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)F為該拋物線的焦點(diǎn),點(diǎn)P在拋物線上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以A,F(xiàn)為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某網(wǎng)絡(luò)營(yíng)銷部門為了統(tǒng)計(jì)某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市100名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如圖頻率分布直方圖.
(1)估計(jì)直方圖中網(wǎng)購(gòu)金額的中位數(shù);
(2)若規(guī)定網(wǎng)購(gòu)金額超過(guò)15千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)15千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”;若以該網(wǎng)店的頻率估計(jì)全市“非網(wǎng)購(gòu)達(dá)人”和“網(wǎng)購(gòu)達(dá)人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”的人數(shù)之差的絕對(duì)值為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案