【題目】某校兩個(gè)班級(jí)100名學(xué)生在一次考試中的成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)如下表:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

1)求頻率表分布直方圖中a的值;

2)根據(jù)頻率表分布直方圖,估計(jì)這100名學(xué)生這次考試成績(jī)的平均分;

3)現(xiàn)用分層抽樣的方法從第三、四、五組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

【答案】1a=0.005;(274.5;(3

【解析】

1)根據(jù)各組的頻率之和為1計(jì)算即可;

2)每組的中值與該組頻率之積的和即為平均值計(jì)算即可;

3)根據(jù)分層抽樣得到各組抽出人數(shù),列出基本事件,找到所求事件包含的基本事件個(gè)數(shù),利用古典概型求解即可.

1)由題意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005

2)由直方圖分?jǐn)?shù)在[50,60]的頻率為0.05,[60,70]的頻率為0.35[70,80]的頻率為0.30,[80,90]的頻率為0.20,[90100]的頻率為0.10,所以這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分的估計(jì)值為:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5

3)由直方圖,得:

3組人數(shù)為0.3×100=30,

4組人數(shù)為0.2×100=20人,

5組人數(shù)為0.1×100=10人.

所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,

每組分別為:

3組:人,

4組:人,

5組:=1人.

所以第34、5組分別抽取3人、2人、1人.

設(shè)第3組的3位同學(xué)為A1,A2,A3,第4組的2位同學(xué)為B1,B2,第5組的1位同學(xué)為C1,則從六位同學(xué)中抽兩位同學(xué)有15種可能如下:

A1,A2),(A1,A3),(A2A3),(B1,B2),(A1,B1),(A1B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1C1),(A2C1),(A3C1),(B1,C1),(B2,C1),其中恰有1人的分?jǐn)?shù)不低于90(分)的情形有:(A1,C1),(A2C1),(A3,C1),(B1,C1),(B2C1),共5種.

所以恰有1人的分?jǐn)?shù)不低于90分的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】英國(guó)脫歐這件國(guó)際大事引起了社公各界廣泛關(guān)注,根據(jù)最新情況,英國(guó)大選之后,預(yù)計(jì)將會(huì)在2020日年131日完成脫歐,但是因?yàn)橹?/span>脫歐一直被延時(shí),所以很多人認(rèn)為并不能如期完成,某媒體隨機(jī)在人群中抽取了100人做調(diào)查,其中40歲以下的人群認(rèn)為能完成的占,而40歲以上的有10人認(rèn)為不能完成

1)完成列聯(lián)表,并回答能否有90%的把握認(rèn)為預(yù)測(cè)國(guó)際大事的準(zhǔn)確率與年齡有關(guān)?

能完成

不能完成

合計(jì)

40歲以上

55

40歲以下

合計(jì)

2)現(xiàn)按照分層抽樣抽取20人,在這20人的樣本中,再選取40歲以下的4人做深度調(diào)查,至少有2人認(rèn)為英國(guó)能夠完成脫歐的概率為多少?

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A.若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1

B.若正態(tài)分布,則

C.把某中學(xué)的高三年級(jí)560名學(xué)生編號(hào):1560,再?gòu)木幪?hào)為11010名學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為,然后抽取編號(hào)為,,…的學(xué)生,這樣的抽樣方法是分層抽樣

D.若一組數(shù)據(jù)0,,3,4的平均數(shù)是2,則該組數(shù)據(jù)的方差是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,若滿足有四個(gè),則的取值范圍為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情過(guò)后,某商場(chǎng)開(kāi)業(yè)一周累計(jì)生成2萬(wàn)張購(gòu)物單,從中隨機(jī)抽出100張,對(duì)每單消費(fèi)金額進(jìn)行統(tǒng)計(jì)得到下表:

消費(fèi)金額(單位:元)

購(gòu)物單張數(shù)

25

25

30

?

?

由于工作人員失誤,后兩欄數(shù)據(jù)已無(wú)法辨識(shí),但當(dāng)時(shí)記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計(jì)出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等(用頻率估計(jì)概率),完成下列問(wèn)題:

1)估計(jì)該商場(chǎng)開(kāi)業(yè)一周累計(jì)生成的購(gòu)物單中,單筆消費(fèi)額超過(guò)800元的購(gòu)物單張數(shù);

2)為鼓勵(lì)顧客消費(fèi),拉動(dòng)內(nèi)需,該商場(chǎng)打算在今年國(guó)慶期間進(jìn)行促銷活動(dòng),凡單筆消費(fèi)超過(guò)600元者,可抽獎(jiǎng)一次,中一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的顧客可以分別獲得價(jià)值元、元、元的獎(jiǎng)品.已知中獎(jiǎng)率為100%,且一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率依次構(gòu)成等差數(shù)列,其中一等獎(jiǎng)的中獎(jiǎng)率為.若今年國(guó)慶期間該商場(chǎng)的購(gòu)物單數(shù)量預(yù)計(jì)比疫情后開(kāi)業(yè)一周的購(gòu)物單數(shù)量增長(zhǎng)5%,試預(yù)測(cè)商場(chǎng)今年國(guó)慶期間采辦獎(jiǎng)品的開(kāi)銷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為加強(qiáng)對(duì)銷售員的考核與管理,從銷售部門隨機(jī)抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬(wàn)元)分別為:3.35,3.35,3.38,3.41,3.433.44,3.463.48,3.51,3.543.56,3.563.57,3.59,3.60,3.64,3.64,3.673.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過(guò)3.52萬(wàn)元的組員不低于全組人數(shù)的,則對(duì)該銷售小組給予獎(jiǎng)勵(lì),否則不予獎(jiǎng)勵(lì).試判斷該公司是否需要對(duì)抽取的銷售小組發(fā)放獎(jiǎng)勵(lì);

(Ⅱ)在該銷售小組中,已知月均銷售額最高的5名銷售員中有1名的月均銷售額造假.為找出月均銷售額造假的組員,現(xiàn)決定請(qǐng)專業(yè)機(jī)構(gòu)對(duì)這5名銷售員的月均銷售額逐一進(jìn)行審核,直到能確定出造假組員為止.設(shè)審核次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為.經(jīng)過(guò)點(diǎn)且傾斜角為的直線與橢圓交于兩點(diǎn)(其中點(diǎn)軸上方),的周長(zhǎng)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)如圖,把平面沿軸折起來(lái),使軸正半軸和軸確定的半平面,與軸負(fù)半軸和軸所確定的半平面互相垂直,若折疊后的周長(zhǎng)為,求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】多面體中,△為等邊三角形,△為等腰直角三角形,平面,平面.

1)求證:

2)若,,求平面與平面所成的較小的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,過(guò)曲線外的一點(diǎn)(其中為銳角)作平行于的直線與曲線分別交于

(Ⅰ) 寫(xiě)出曲線和直線的普通方程(以極點(diǎn)為原點(diǎn),極軸為 軸的正半軸建系);

)若成等比數(shù)列,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案