5.已知復數(shù)z是一元二次方程x2-2x+2=0的一個根,則|z|的值為( 。
A.1B.$\sqrt{2}$C.0D.2

分析 根據(jù)題意,設復數(shù)z=a+bi,把z代入x2-2x+2=0中求出a、b的值,再計算|z|.

解答 解:設復數(shù)z=a+bi,a、b∈R,i是虛數(shù)單位,
由z是x2-2x+2=0的復數(shù)根,
∴(a+bi)2-2(a+bi)+2=0,
即(a2-b2-2a+2)+(2ab-2b)i=0,
∴$\left\{\begin{array}{l}{{a}^{2}{-b}^{2}-2a+2=0}\\{2ab-2b=0}\end{array}\right.$,
解得a=1,b=±1,
∴z=1±i,
∴|z|=$\sqrt{2}$.
故選:B.

點評 本題考查了復數(shù)的代數(shù)運算和模長公式問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{-tanx,0≤x<\frac{π}{2}}\end{array}\right.$則f(f($\frac{π}{4}$))=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=5,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥($\overrightarrow$-$\overrightarrow{a}$),則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點是F,左、右頂點分別是A1,A2,過F做x軸的垂線交雙曲線于B,C兩點,若A1B⊥A2C,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.共享單車是指企業(yè)與政府合作,在公共服務區(qū)等地方提供自行車單車共享服務,現(xiàn)從6輛黃色共享單車和4輛藍色共享單車中任取4輛進行檢查,則至少有兩個藍色共享單車的取法種數(shù)是115.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.《九章算術》中有這樣一個問題:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”大意為:有個圓柱形木頭,埋在墻壁中(如圖所示),不知道其大小,用鋸沿著面AB鋸掉裸露在外面的木頭,鋸口CD深1寸,鋸道AB長度為1尺,問這塊圓柱形木料的直徑是26寸.(注:1尺=10寸)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)當m為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;
(2)已知方程表示的直線l在x軸上的截距為-3,求實數(shù)m的值;
(3)若方程表示的直線l的傾斜角是45°,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.已知圓C的極坐標方程為ρ=8cosθ+6sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-t}\\{y=at+1}\end{array}\right.$(t為參數(shù),a為實常數(shù)).
(1)若a=-1,求直線l與圓C的所有公共點;
(2)若直線l與圓C相交,截得弦長為2$\sqrt{7}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=\frac{3}{2}$,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$±\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案