【題目】已知圓.
(1)若過點(diǎn)的直線被圓截得的弦長(zhǎng)為,求直線的方程;
(2)已知點(diǎn) 為圓上的點(diǎn),求的取值范圍.
【答案】(1)或;(2)
【解析】
根據(jù)圓的方程得到圓心和半徑;(1)當(dāng)直線斜率不存在時(shí),通過求解交點(diǎn)坐標(biāo)求得弦長(zhǎng),滿足題意,可得一個(gè)方程;當(dāng)直線斜率存在時(shí),利用直線被圓截得弦長(zhǎng)的公式構(gòu)造方程求出斜率,得到另一個(gè)方程,從而求得結(jié)果;(2)利用的幾何意義將問題轉(zhuǎn)化為圓上的點(diǎn)到點(diǎn)的距離的平方;通過求解距離的最大值和最小值得到的取值范圍.
由已知得圓的標(biāo)準(zhǔn)方程為:
圓的圓心為:;半徑為:
(1)當(dāng)斜率不存在,即時(shí),直線與圓交點(diǎn)為:
截得的弦長(zhǎng)為:,滿足題意
當(dāng)斜率存在時(shí),設(shè),即
圓心到直線距離
,解得:
綜上所述:直線方程為:或
(2)的幾何意義為:圓上的點(diǎn)到的距離的平方
圓心到點(diǎn)的距離為:
;
;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(1)證明:AC=AB1;
(2)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點(diǎn),則“k=1”是“△OAB的面積為 ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商區(qū)停車場(chǎng)臨時(shí)停車按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時(shí)收費(fèi)6元,超過1小時(shí)的部分每小時(shí)收費(fèi)8元不足1小時(shí)的部分按1小時(shí)計(jì)算現(xiàn)有甲、乙二人在該商區(qū)臨時(shí)停車,兩人停車都不超過4小時(shí).
1若甲停車1小時(shí)以上且不超過2小時(shí)的概率為,停車付費(fèi)多于14元的概率為,求甲停車付費(fèi)恰為6元的概率;
若每人停車的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲、乙二人停車付費(fèi)之和為36元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年來,網(wǎng)上購(gòu)物已經(jīng)成為人們消費(fèi)的一種趨勢(shì),假設(shè)某網(wǎng)上商城的某種商品每月的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足關(guān)系式:,其中,為常數(shù).已知銷售價(jià)格為元/件時(shí),每月可售出千件.
(1)求的值;
(2)假設(shè)每件商品的進(jìn)價(jià)為元,試確定銷售價(jià)格的值,使該商城每月銷售該商品所獲得的利潤(rùn)最大.(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在x軸正半軸上,半徑為5,且與直線相切.
(1)求圓C的方程;
(2)設(shè)點(diǎn),過點(diǎn)作直線與圓C交于兩點(diǎn),若,求直線的方程;
(3)設(shè)P是直線上的點(diǎn),過P點(diǎn)作圓C的切線,切點(diǎn)為求證:經(jīng)過 三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘員工,有名應(yīng)聘者參加筆試,隨機(jī)抽查了其中名應(yīng)聘者筆試試卷,統(tǒng)計(jì)他們的成績(jī)?nèi)缦卤恚?/span>
分?jǐn)?shù)段 | |||||||
人數(shù) | 1 | 3 | 6 | 6 | 2 | 1 | 1 |
若按筆試成績(jī)擇優(yōu)錄取名參加面試,由此可預(yù)測(cè)參加面試的分?jǐn)?shù)線為( )
A. 分 B. 分 C. 分 D. 分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com