A. | 16 | B. | 26 | C. | 21 | D. | 38 |
分析 由雙曲線的定義可得AF2+BF2 =28,△ABF2的周長是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,計算可得答案.
解答 解:由雙曲線的定義可得 AF2-AF1=2a,BF2 -BF1=2a,
∴AF2+BF2 -AB=4a=18,即AF2+BF2 -10=18,AF2+BF2 =28.
△ABF2(F2為右焦點)的周長是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=28+10=38.
故選:D.
點評 本題考查雙曲線的定義和雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,求出AF2+BF2 =28是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平面上一定存在直線 | B. | 平面上一定存在曲線 | ||
C. | 曲面上一定不存在直線 | D. | 曲面上一定存在曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -1 | C. | $\frac{{3+\sqrt{21}}}{2}$ | D. | 4或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com