【題目】綠水青山就是金山銀山的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:

年份

2014

2015

2016

2017

2018

銷量(萬臺)

8

10

13

25

24

某機構(gòu)調(diào)查了該地區(qū)30位購車車主的性別與購車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

6

24

女性車主

2

總計

30

1)求新能源乘用車的銷量關(guān)于年份的線性相關(guān)系數(shù),并判斷是否線性相關(guān);

2)請將上述列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān);

參考公式:,其中.,若,則可判斷線性相關(guān).

附表:

010

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(1),線性相關(guān)(2)填表見解析,有90%的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān)

【解析】

1)計算出,,再代入相關(guān)系數(shù)公式計算可得;

2)依題意,完善表格計算出與參數(shù)數(shù)據(jù)比較可得.

解:(1)依題意,

,

,,

線性相關(guān).

2)依題意,完善表格如下:

購置傳統(tǒng)燃油車

購置新能源車

總計

男性車主

18

6

24

女性車主

2

4

6

總計

20

10

30

故有90%的把握認(rèn)為購車車主是否購置新能源乘用車與性別有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為

1)求三棱錐的體積;

2)若的中點,求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知過點的直線與橢圓交于不同的兩點,,其中.

1)若,求的面積;

2)在x軸上是否存在定點T,使得直線TATBy軸圍成的三角形始終為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是(  )

A.2017年第一季度GDP增速由高到低排位第5的是浙江。

B.與去年同期相比,2017年第一季度的GDP總量實現(xiàn)了增長.

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP總量不超過4000億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.

年齡

(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成

不贊成

合計

(2)若從年齡在[55,65)的被調(diào)查人中隨機選取2人進(jìn)行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.

參考數(shù)據(jù):

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,且過點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點,過點軸的垂線,垂足為,取點,連接,過點的垂線交軸于點,點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與直線相切,且與圓外切.

1)求動圓圓心軌跡的方程;

2)已知過點的直線:與曲線交于,兩點,是否存在常數(shù),使得恒為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓在圓外部且與圓相切,同時還在圓內(nèi)部與圓相切.

1)求動圓圓心的軌跡方程;

2)記(1)中求出的軌跡為,軸的兩個交點分別為、,上異于、的動點,又直線軸交于點,直線、分別交直線、兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),各項均為正整數(shù)的數(shù)列定義如下: ,

(1)若,寫出,,;

(2)求證:數(shù)列單調(diào)遞增的充要條件是為偶數(shù);

(3)若為奇數(shù),是否存在滿足?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案