分析 (1)先求出函數(shù)的導(dǎo)數(shù),再由f′(1)=0求解a.
(2)將“f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn)”轉(zhuǎn)化為“方程f′(x)=0在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的實(shí)根”,用△>0求解.
(3)a=1,“要使函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn)”即為“方程x2(x2-4x+1m)=0恰有三個(gè)不同的實(shí)根”.因?yàn)閤=0是一個(gè)根,所以方程x2-4x+1-m=0應(yīng)有兩個(gè)非零的不等實(shí)根,再用判別式求解.
解答 解:(1)依題意,f′(1)=0
∵f′(x)=-3x2+2ax
-3(1)2+2•a•1=0,
∴a=$\frac{3}{2}$;
(2)若f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn),
則方程f′(x)=-3x2+2ax=0在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的實(shí)根,
∴△>0,f′(-1)<0,f′(2)<0,-1<$\frac{a}{3}$<2,
解得:-$\frac{3}{2}$<a<3且a≠0
但a=0時(shí),f(x)=-x3+1無(wú)極值點(diǎn),
∴a的取值范圍為(-$\frac{3}{2}$,0)∪(0,3);
(3)a=1時(shí),f(x)=-x3+x2+1,
要使函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn),
等價(jià)于方程-x3+x2+1=x4-5x3+(2-m)x2+1,
即方程x2(x2-4x+1-m)=0恰有三個(gè)不同的實(shí)根.
∵x=0是一個(gè)根,
∴應(yīng)使方程x2-4x+1-m=0有兩個(gè)非零的不等實(shí)根,
由△=16-4(1-m)>0,1-m≠0,解得m>-3,m≠1,
∴存在m∈(-3,1)∪(1,+∞),
使用函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn).
點(diǎn)評(píng) 本題主要考查函數(shù)與方程的綜合運(yùn)用,主要涉及了方程的根與函數(shù)的零點(diǎn)間的轉(zhuǎn)化.還考查了計(jì)算能力和綜合運(yùn)用知識(shí)的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18個(gè) | B. | 27個(gè) | C. | 36個(gè) | D. | 60個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com