1.已知函數(shù)f(x)=-x3+ax2+1,(a∈R).
(1)若f(x)圖象上橫坐標(biāo)為1的點(diǎn)處存在垂直于y軸的切線,求a的值;
(2)若f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn),求a取值范圍;
(3)當(dāng)a=1時(shí),是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1的圖象于函數(shù)f(x)的圖象恰有三個(gè)不同的交點(diǎn),若存在,試求出實(shí)數(shù)m的值;若不存在,說(shuō)明理由.

分析 (1)先求出函數(shù)的導(dǎo)數(shù),再由f′(1)=0求解a.
(2)將“f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn)”轉(zhuǎn)化為“方程f′(x)=0在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的實(shí)根”,用△>0求解.
(3)a=1,“要使函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn)”即為“方程x2(x2-4x+1m)=0恰有三個(gè)不同的實(shí)根”.因?yàn)閤=0是一個(gè)根,所以方程x2-4x+1-m=0應(yīng)有兩個(gè)非零的不等實(shí)根,再用判別式求解.

解答 解:(1)依題意,f′(1)=0
∵f′(x)=-3x2+2ax
-3(1)2+2•a•1=0,
∴a=$\frac{3}{2}$;
(2)若f(x)在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的極值點(diǎn),
則方程f′(x)=-3x2+2ax=0在區(qū)間(-1,2)內(nèi)有兩個(gè)不同的實(shí)根,
∴△>0,f′(-1)<0,f′(2)<0,-1<$\frac{a}{3}$<2,
解得:-$\frac{3}{2}$<a<3且a≠0
但a=0時(shí),f(x)=-x3+1無(wú)極值點(diǎn),
∴a的取值范圍為(-$\frac{3}{2}$,0)∪(0,3);
(3)a=1時(shí),f(x)=-x3+x2+1,
要使函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn),
等價(jià)于方程-x3+x2+1=x4-5x3+(2-m)x2+1,
即方程x2(x2-4x+1-m)=0恰有三個(gè)不同的實(shí)根.
∵x=0是一個(gè)根,
∴應(yīng)使方程x2-4x+1-m=0有兩個(gè)非零的不等實(shí)根,
由△=16-4(1-m)>0,1-m≠0,解得m>-3,m≠1,
∴存在m∈(-3,1)∪(1,+∞),
使用函數(shù)f(x)與g(x)=x4-5x3+(2-m)x2+1的圖象恰有三個(gè)交點(diǎn).

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的綜合運(yùn)用,主要涉及了方程的根與函數(shù)的零點(diǎn)間的轉(zhuǎn)化.還考查了計(jì)算能力和綜合運(yùn)用知識(shí)的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.高二學(xué)生即將升入高三,高三學(xué)生參加高校自主招生考試是升入理想大學(xué)的一條途徑.甲、乙、丙三位同學(xué)一起參某高校組織的自主招生考試,考試分筆試和面試兩部分,筆試和面試均合格者將成為該校的預(yù)錄取生(可在高考中加分錄。瑑纱慰荚囘^(guò)程相互獨(dú)立,根據(jù)甲中、乙、丙三位同學(xué)的平時(shí)成績(jī)分析,甲,乙,丙三位同學(xué)能通過(guò)筆試的概率分別是$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{5}$;能通過(guò)面試的概率分別是$\frac{1}{5}$,$\frac{1}{4}$,$\frac{1}{2}$.
(1)求甲、乙、丙三位同學(xué)恰有兩位通過(guò)筆試的概率;
(2)設(shè)甲、乙、丙三位同學(xué)各自經(jīng)過(guò)兩次考試后,能被該高校錄取的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知△ABC的三邊比為3:5:7,則這個(gè)三角形的最大角的正切值是( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),如表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額)如表1:

表1
 年份x 2011 2012 2013 2014 2015
 儲(chǔ)蓄存款y(千億元) 5 6 7 8 10
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,t=x-2012,z=y-5得到如表2:
表2
 時(shí)間代號(hào)t 1 3 4 5
 z 0 1 2 3 5
(1)求z關(guān)于t的線性回歸方程;
(2)通過(guò)(1)中的方程,求出y關(guān)于x的回歸方程;
(3)用所求回歸方程預(yù)測(cè)到2020年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.從0,1,2,3,4中選取三個(gè)不同的數(shù)字組成一個(gè)三位數(shù),其中奇數(shù)有( 。
A.18個(gè)B.27個(gè)C.36個(gè)D.60個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,點(diǎn)E是線B1C段的中點(diǎn),則三棱錐A-DED1外接球的體積為36π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在正方體ABCD-A1B1C1D1中,平面A1B1CD與平面ABCD所成二面角為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)fn(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2,a3,a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明;
(3)求證:$\frac{1}{{{{(2{a_1}-5)}^2}}}$+$\frac{1}{{{{(2{a_2}-5)}^2}}}$+…+$\frac{1}{{{{(2{a_n}-5)}^2}}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知D為圓O:x2+y2=8上的動(dòng)點(diǎn),過(guò)點(diǎn)D向x軸作垂線DN,垂足為N,T在線段DN上且滿足$|{TN}|:|{DN}|=1:\sqrt{2}$.
(1)求動(dòng)點(diǎn)T的軌跡方程;
(2)若M是直線l:x=-4上的任意一點(diǎn),以O(shè)M為直徑的圓K與圓O相交于P,Q兩點(diǎn),求證:直線PQ必過(guò)定點(diǎn)E,并求出點(diǎn)E的坐標(biāo);
(3)若(2)中直線PQ與動(dòng)點(diǎn)T的軌跡交于G,H兩點(diǎn),且$\overrightarrow{EG}=3\overrightarrow{HE}$,求此時(shí)弦PQ的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案