【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù),).在以原點O為極點,x軸的非負(fù)半軸為極軸所建立的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.設(shè)直線l與曲線C相交于A,B兩點.
(1)求曲線C和直線l的直角坐標(biāo)方程;
(2)已知點,求的最大值.
【答案】(1),;(2).
【解析】
(1)可得,根據(jù)互化公式可得,消去參數(shù)可得;
(2)聯(lián)立直線l的參數(shù)方程與曲線C的直角坐標(biāo)方程,根據(jù)參數(shù)的幾何意義以及三角函數(shù)的值域可得結(jié)果.
(1)根據(jù)題意得,曲線C的極坐標(biāo)方程為,
,即,
所以曲線C的直角坐標(biāo)方程為,即,
直線l的普通方程為.
(2)聯(lián)立直線l的參數(shù)方程與曲線C的直角坐標(biāo)方程,
將,代入,
化簡,得.
設(shè)點A,B所對應(yīng)的參數(shù)分別為,,
則,,,
由(1)可知,曲線C是圓心,半徑為1的圓,點P在圓外,
由直線參數(shù)方程參數(shù)的幾何意義知,
,當(dāng)且僅當(dāng)時取到.
即的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個不同平面、、和直線,下面有四個命題:
①若,,,則;
②直線上有兩點到平面的距離相等,則;
③,,則;
④若直線不在平面內(nèi),,,則.
則正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰梯形中,,,,點為的中點.將沿折起,使點到達(dá)的位置,得到如圖所示的四棱錐,點為棱的中點.
(1)求證:平面;
(2)若平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】開學(xué)后,某學(xué)校食堂為了減少師生就餐排隊時間,特推出即點即取的米飯?zhí)撞秃兔媸程撞蛢煞N,已知小明同學(xué)每天中午都會在食堂提供的米飯?zhí)撞秃兔媸程撞椭羞x擇一種,米飯?zhí)撞偷膬r格是每份15元,面食套餐的價格是每份10元,如果小明當(dāng)天選擇了某種套餐,她第二天會有的可能性換另一種類型的套餐,假如第1天小明選擇了米飯?zhí)撞停?/span>n天選擇米飯?zhí)撞偷母怕?/span>,給出以下論述:①小明同學(xué)第二天一定選擇面食套餐;②;③;④前n天小明同學(xué)午餐花費的總費用數(shù)學(xué)期望為.其中正確的是( )
A.②④B.①②③C.③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值點;
(2)當(dāng)時,對任意的,恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別是、,離心率,過點的直線交橢圓于、兩點, 的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓: ()與橢圓交于、兩點,點為橢圓上一動點,若直線、與軸分別交于、兩點,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且滿足:.
(1)求,,的值;
(2)求證:數(shù)列是等比數(shù)列,并求通項公式;
(3)令,如果對任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的切直線MN于點P,射線PK從PN出發(fā)繞點P逆時針方向旋轉(zhuǎn)到PM,旋轉(zhuǎn)過程中,PK交于點Q,設(shè)為x,弓形PmQ的面積為,那么的圖象大致是
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com