【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調(diào)查,得到的情況如下表所示:

喜歡盲擰

不喜歡盲擰

總計

22

30

12

總計

50

1

并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:

成功完成時間(分鐘)

人數(shù)

10

10

5

5

2

1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?

2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);附參考公式及數(shù)據(jù):,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)表1見解析,能;(2分鐘.

【解析】

(1)根據(jù)總計50人,男喜歡盲擰22人,女不喜歡盲擰12人,補充填表即可,由的計算公式計算數(shù)值與5.024比較即可;

2)根據(jù)平均數(shù)的定義計算即可.

1)依題意,補充完整的表1如下:

喜歡盲擰

不喜歡盲擰

總計

22

8

30

8

12

20

總計

30

20

50

由表中數(shù)據(jù)計算得的觀測值為

所以能在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關.

2)依題意,所求平均時間為(分鐘).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為1,2,3的人數(shù)分別為3,3, 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校計劃舉辦“國學”系列講座.由于條件限制,按男、女生比例采取分層抽樣的方法,從某班選出10人參加活動,在活動前,對所選的10名同學進行了國學素養(yǎng)測試,這10名同學的性別和測試成績(百分制)的莖葉圖如圖所示.

(1)分別計算這10名同學中,男女生測試的平均成績;

(2)若這10名同學中,男生和女生的國學素養(yǎng)測試成績的標準差分別為S1S2,試比較S1S2的大小(不必計算,只需直接寫出結果);

(3)規(guī)定成績大于等于75分為優(yōu)良,從這10名同學中隨機選取一男一女兩名同學,求這兩名同學的國學素養(yǎng)測試成績均為優(yōu)良的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有7位歌手1至7號參加一場歌唱比賽, 550名大眾評委現(xiàn)場投票決定歌手名次, 根據(jù)年齡將大眾評委分為5組, 各組的人數(shù)如下:

組別

A

B

C

D

E

人數(shù)

50

100

200

150

50

為了調(diào)查大眾評委對7位歌手的支持狀況, 現(xiàn)用分層抽樣方法從各組中抽取若干評委, 其中從B組中抽取了6人. 請將其余各組抽取的人數(shù)填入下表.

中, 若A, C兩組被抽到的評委中各有2人支持1號歌手, 現(xiàn)從這兩組被抽到的評委中分別任選1人, 求這2人都支持1號歌手的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若不等式時恒成立,求實數(shù)a的取值范圍;

3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點 ,與拋物線的準線相交于不同的兩點 ,且.

(1)求拋物線的方程;

(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的內(nèi)切球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,OA,OB是兩條互相垂直的筆直公路,半徑OA=2km的扇形AOB是某地的一名勝古跡區(qū)域.當?shù)卣疄榱司徑庠摴袍E周圍的交通壓力,欲在圓弧AB上新增一個入口P(點P不與A,B重合),并新建兩條都與圓弧AB相切的筆直公路MB,MN,切點分別是B,P.當新建的兩條公路總長最小時,投資費用最低.設∠POA=,公路MB,MN的總長為

(1)求關于的函數(shù)關系式,并寫出函數(shù)的定義域;

(2)當為何值時,投資費用最低并求出的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論正確的是(

A.存在每個面都是直角三角形的四面體

B.每個面都是三角形的幾何體是三棱錐

C.圓臺上、下底面圓周上各取一點的連線是母線

D.用一個平面截圓錐,截面與底面間的部分是圓臺

查看答案和解析>>

同步練習冊答案

組別

A

B

C

D

E

人數(shù)

50

100

200

150

50

抽取人數(shù)

6

        <i id="oyqky"></i>