【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,討論的單調性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問某地100名高中學生在選擇座位時是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計 | 50 | 50 | 100 |
(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5名學生中隨機選取3名做深度采訪,求這3名學生中恰有2名挑同桌的概率;
(2)根據(jù)以上列聯(lián)表,是否有以上的把握認為“性別與在選擇座位時是否挑同桌”有關?
下面的臨界值表供參考:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以坐標原點為圓心的圓與拋物線相交于不同的兩點, ,與拋物線的準線相交于不同的兩點, ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標原點的直線與拋物線相交于不同的兩點, ,且滿足.證明直線過定點,并求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據(jù)調查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調查,得到的情況如下表所示:
喜歡盲擰 | 不喜歡盲擰 | 總計 | |
男 | 22 | ▲ | 30 |
女 | ▲ | 12 | ▲ |
總計 | ▲ | ▲ | 50 |
表1
并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:
成功完成時間(分鐘) | ||||
人數(shù) | 10 | 10 | 5 | 5 |
表2
(1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?
(2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);附參考公式及數(shù)據(jù):,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某通信公司為了配合客戶的不同需要,現(xiàn)設計A,B兩種優(yōu)惠方案,這兩種方案的應付話費y(元)與通話時間x(分鐘)之間的關系如圖所示(實線部分).(注:圖中MN∥CD)
(1)若通話時間為2小時,則按方案A,B各付話費多少元?
(2)方案B從500分鐘以后,每分鐘收費多少元?
(3)通話時間在什么范圍內,方案B才會比方案A優(yōu)惠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點和點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校進行了一次創(chuàng)新作文大賽,共有100名同學參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結論錯誤的是
A. 得分在之間的共有40人
B. 從這100名參賽者中隨機選取1人,其得分在的概率為
C. 這100名參賽者得分的中位數(shù)為65
D. 估計得分的眾數(shù)為55
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
為了了解高中新生的體能情況,某學校抽取部分高一學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從 左到右各小長方形面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12﹒
[來
(Ⅰ)第二小組的頻率是多少?樣本容量是多少?
(Ⅱ)若次數(shù)在110以上(含110次)為達標,試估計該學校全體高一學生的達標率是多少?
(Ⅲ)在這次測試中,學生跳繩次數(shù)的中位數(shù)落在哪個小組內?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com