【題目】

為了了解高中新生的體能情況,某學(xué)校抽取部分高一學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖(如圖),圖中從 左到右各小長(zhǎng)方形面積之比為24171593,第二小組頻數(shù)為12﹒

[來(lái)

)第二小組的頻率是多少?樣本容量是多少?

)若次數(shù)在110以上(含110次)為達(dá)標(biāo),試估計(jì)該學(xué)校全體高一學(xué)生的達(dá)標(biāo)率是多少?

)在這次測(cè)試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?請(qǐng)說(shuō)明理由.

【答案】1008150;(288;3)第四小組,理由見(jiàn)解析

【解析】

試題(1)由頻率分布直方圖中各小矩形面積之和為1結(jié)合面積之比得到第二小組的頻率,從而求得樣本容量;(2)由頻率分布直方圖中各小矩形的面積和為1與面積之比可求出達(dá)標(biāo)的頻率即達(dá)標(biāo)率;(3)求出前四組的頻數(shù)即可得到中位數(shù)所在的區(qū)間.

試題解析:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,因此第二小組的頻率為:又因?yàn)轭l率=

所以

2)由圖可估計(jì)該學(xué)校高一學(xué)生的達(dá)標(biāo)率約為

3)由已知可得各小組的頻數(shù)依次為612,5145,27,9,所以前三組的頻數(shù)之和為69,前四組的頻數(shù)之和為114,所以跳繩次數(shù)的中位數(shù)落在第四小組內(nèi).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線(xiàn)相交于不同的兩點(diǎn) ,與拋物線(xiàn)的準(zhǔn)線(xiàn)相交于不同的兩點(diǎn) ,且.

(1)求拋物線(xiàn)的方程;

(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于不同的兩點(diǎn), ,且滿(mǎn)足.證明直線(xiàn)過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)大型噴水池的中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測(cè)得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100 m到達(dá)點(diǎn)B,在B點(diǎn)測(cè)得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中是假命題的是( )

A. ,函數(shù)都不是偶函數(shù)

B. ,

C. ,使

D. 若向量,則方向上的投影為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(

A.存在每個(gè)面都是直角三角形的四面體

B.每個(gè)面都是三角形的幾何體是三棱錐

C.圓臺(tái)上、下底面圓周上各取一點(diǎn)的連線(xiàn)是母線(xiàn)

D.用一個(gè)平面截圓錐,截面與底面間的部分是圓臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖像在處的切線(xiàn)方程與的單調(diào)區(qū)間;

(2)設(shè)是函數(shù)的導(dǎo)函數(shù),試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱柱的底面邊長(zhǎng)為2,側(cè)棱為上底面上的動(dòng)點(diǎn),給出下列四個(gè)結(jié)論:

①若PD=3,則滿(mǎn)足條件的P點(diǎn)有且只有一個(gè);

②若,則點(diǎn)P的軌跡是一段圓;

③若PD∥平面,則DP長(zhǎng)的最小值為2;

④若PD∥平面,且,則平面BDP截正四棱柱的外接球所得圖形的面積為

其中所有正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

1)選5人排成一排;

2)排成前后兩排,前排4人,后排3人;

3)全體排成一排,甲不站排頭也不站排尾;

4)全體排成一排,女生必須站在一起;

5)全體排成一排,男生互不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線(xiàn)段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實(shí)線(xiàn)部分)進(jìn)行裝飾時(shí),直線(xiàn)部分的裝飾費(fèi)用為4/米,弧線(xiàn)部分的裝飾費(fèi)用為9/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案