1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},則A∩B=( 。
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

分析 化簡集合B,然后直接利用交集的運算求解.

解答 解:合A={x|-1≤x≤2}=[-1,2],B={y|y=x2,x∈A}=[0,4],
則A∩B=[0,2],
故選:B

點評 本題考查交集及其運算,考查了函數(shù)的值域,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某宣傳部門網(wǎng)站為弘揚社會主義思想文化,開展了以核心價值觀為主題的系列宣傳活動,并以“社會主義核心價值觀”作為關(guān)鍵詞便于網(wǎng)民搜索.此后,該網(wǎng)站的點擊量每月都比上月增長50%,那么4個月后,該網(wǎng)站的點擊量和原來相比,增長為原來的( 。
A.2倍以上,但不超過3倍B.3倍以上,但不超過4倍
C.4倍以上,但不超過5倍D.5倍以上,但不超過6倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知三棱柱ABC-A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點,N在線段AB上,且AN=2NB,點P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當(dāng)$\frac{CP}{P{C}_{1}}$為何值時,有PN∥平面BMC1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=sin({x+\frac{π}{4}})+cos({x-\frac{π}{4}})$,則(  )
A.$f(x)=-f({x+\frac{π}{2}})$B.$f(x)=f({-x+\frac{π}{2}})$C.$f(x)•f({x+\frac{π}{2}})=1$D.$f(x)=-f({-x+\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知F1,F(xiàn)2為橢圓C的兩個焦點,P為C上一點,若△PF1F2的三邊|PF1|,|F1F2|,|PF2|成等差數(shù)列,則C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若等比數(shù)列{an}的前n項和${S_n}={2^{n-1}}+a$,則a3a5=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:
售價x3335373941434547
銷量y840800740695640580525460
①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2,并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;
②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
${\sum_{i=1}^8{({{y_i}-{{\hat y}_i}})}^2}$49428.7411512.43175.26
${\sum_{i=1}^8{({{y_i}-\overline y})}^2}$124650
(附:相關(guān)指數(shù)${R^2}=1-\frac{{{{\sum_{i=1}^n{({{y_i}-{{\hat y}_i}})}}^2}}}{{{{\sum_{i=1}^n{({{y_i}-\overline y})}}^2}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,則tanα等于( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C過拋物線y2=4x的焦點,且圓心在此拋物線的準(zhǔn)線上,若圓C的圓心不在x軸上,且與直線x+$\sqrt{3}$y-3=0相切,則圓C的半徑為14.

查看答案和解析>>

同步練習(xí)冊答案