【題目】如圖所示,某班一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問題.
(Ⅰ)求全班人數(shù)及分數(shù)在[80,100]之間的頻率;
(Ⅱ)現(xiàn)從分數(shù)在[80,100]之間的試卷中任取 3 份分析學生情況,設(shè)抽取的試卷分數(shù)在[90,100]的份數(shù)為X,求X的分布列和數(shù)學望期.

【答案】解:(Ⅰ)由莖葉圖知分數(shù)在[50,60)的人數(shù)為4人;[60,70)的人數(shù)為8人;[70,80)的人數(shù)為10人. ∴總?cè)藬?shù)為
∴分數(shù)在[80,100)人數(shù)為32﹣4﹣8﹣10=10人,∴頻率為
(Ⅱ)[80,90)的人數(shù)為6人;分數(shù)在[90,100)的人數(shù)為4人X的取值可能為0,1,2,3.
,
,
∴分布列為

X

0

1

2

3

P

E(X)=0+ =
【解析】(I)利用莖葉圖的性質(zhì)、頻率的計算公式即可得出.(II)[80,90)的人數(shù)為6人;分數(shù)在[90,100)的人數(shù)為4人X的取值可能為0,1,2,3.再利用超幾何分布列的概率計算公式及其數(shù)學期望計算公式即可得出.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點 ,橢圓 )的離心率為 是橢圓 的右焦點,直線 的斜率為 為坐標原點.

(1)求 的方程;

(2)設(shè)過點 的動直線 相交于 兩點,當 的面積最大時,求 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y= cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面積為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在-歲之間的人進行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為:,,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

關(guān)注

不關(guān)注

合計

青少年

中老年

合計

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)保留兩位小數(shù)和眾數(shù);

(2)根據(jù)已知條件完成列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若m<n,且f(m)=f(n),則n﹣m的取值范圍是(
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,若n=4時,則輸出的結(jié)果為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時(萬元).每件商品售價為0.05萬元.通過分析,該工廠生產(chǎn)的商品能全部售完.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)當年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別求適合下列條件的橢圓的標準方程.

(1)焦點在坐標軸上,且經(jīng)過點A (,-2),B(-2,1);

(2)與橢圓有相同焦點且經(jīng)過點M(,1).

查看答案和解析>>

同步練習冊答案