【題目】已知函數(shù) ,若m<n,且f(m)=f(n),則n﹣m的取值范圍是( )
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)
【答案】A
【解析】解:作出函數(shù)f(x)的圖象如圖:
若m<n,且f(m)=f(n),
則當(dāng)ln(x+1)=1時(shí),得x+1=e,即x=e﹣1,
則滿(mǎn)足0<n≤e﹣1,﹣2<m≤0,
則ln(n+1)= m+1,即m=2ln(n+1)﹣2,
則n﹣m=n+2﹣2ln(n+1),
設(shè)h(n)=n+2﹣2ln(n+1),0<n≤e﹣1
則h′(n)=1﹣ = = ,
當(dāng)h′(x)>0得1<n≤e﹣1,
當(dāng)h′(x)<0得0<n<1,
即當(dāng)n=1時(shí),函數(shù)h(n)取得最小值h(1)=1+2﹣2ln2=3﹣2ln2,
當(dāng)n=0時(shí),h(0)=2﹣2ln1=2,
當(dāng)n=e﹣1時(shí),h(e﹣1)=e﹣1+2﹣2ln(e﹣1+1)=1+e﹣2=e﹣1<2,
則3﹣2ln2≤h(n)<2,
即n﹣m的取值范圍是[3﹣2ln2,2),
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)求函數(shù)的單調(diào)區(qū)間;
(2)試問(wèn):函數(shù)圖像上是否存在不同兩點(diǎn),使得在處的切線(xiàn)平行于直線(xiàn),若存在,求出的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直l的參數(shù)方程是 (t是參數(shù))
(1)將曲線(xiàn)C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),且|AB|= ,求直線(xiàn)的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某便利店計(jì)劃每天購(gòu)進(jìn)某品牌鮮奶若干件,便利店每銷(xiāo)售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時(shí)每瓶調(diào)劑品可獲利元.
(1)若便利店一天購(gòu)進(jìn)鮮奶瓶,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天鮮奶需求量(單位:瓶,)的函數(shù)解析式;
(2)便利店記錄了天該鮮奶的日需求量(單位:瓶,)整理得下表:
日需求量 | ||||||
頻數(shù) |
若便利店一天購(gòu)進(jìn)瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天利潤(rùn)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某班一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問(wèn)題.
(Ⅰ)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率;
(Ⅱ)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為X,求X的分布列和數(shù)學(xué)望期.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n﹣1+a2n<0”的條件.(填“充要條件、充分不必要條件、必要不充分條件、即不充分也不必要條件”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以,,,,,為頂點(diǎn)的五面體中,面為正方形,,,且二面角與二面角都是.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩地相距,貨車(chē)從甲地勻速行駛到乙地,速度不得超過(guò),已知貨車(chē)每小時(shí)的運(yùn)輸成本(單位:圓)由可變本和固定組成組成,可變成本是速度平方的倍,固定成本為元.
(1)將全程勻速勻速成本(元)表示為速度的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)若,為了使全程運(yùn)輸成本最小,貨車(chē)應(yīng)以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sin( x+φ),1), =(1,cos( x+φ))(ω>0,0<φ< ),記函數(shù)f(x)=( + )( ﹣ ).若函數(shù)y=f(x)的周期為4,且經(jīng)過(guò)點(diǎn)M(1, ).
(1)求ω的值;
(2)當(dāng)﹣1≤x≤1時(shí),求函數(shù)f(x)的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com