8.已知$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

分析 根據(jù)向量的夾角公式即可求出.

解答 解:∵$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow{BC}$=($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),
∴$\overrightarrow{BA}•\overrightarrow{BC}$=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$,|$\overrightarrow{AB}$|=1,|$\overrightarrow{BC}$|=1,
∴cos∠ABC=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|•|\overrightarrow{BC}|}$=$\frac{\sqrt{3}}{2}$,
∵0≤∠ABC≤π,
∴∠ABC=$\frac{π}{6}$,
故選:A.

點評 本題考查了向量的夾角公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知tanθ=2,求下列各式的值.
(1)$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$;   
(2)1-4sinθcosθ+2cos2θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知向量$\vec a$,$\vec b$滿足|${\vec a}$|=1,|${\vec b}$|=4,且$\vec a$•$\vec b$=2$\sqrt{3}$,則$\vec a$與$\vec b$的夾角為( 。
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知p:方程x2+mx+1=0有兩個不等的負根;q:方程4x2+4(m-2)x+1=0無實根.若p和q一真一假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,在直四棱柱ABCD-A1B1C1D1中,側棱垂直于底面,DB=BC,DB⊥AC,點M是棱BB1上的一點.
(1)若DB=BC=CD,求BD與平面CDD1C1所成角;
(2)求證:MD⊥AC;
(3)是否存在點M,使得平面DMC1⊥平面CC1D1D?若存在,試確定點M的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知sin($\frac{5π}{2}$+α)=$\frac{1}{3}$,則cosα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.8-$\frac{π}{2}$B.8-$\frac{π}{3}$C.8-$\frac{2π}{3}$D.8-$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某單位為了了解辦公樓用電量y(度)與氣溫x(oC)之間的關系,隨機統(tǒng)計了四個工作日的用電量與當天平均氣溫,并制作了對照表:
氣溫(oC)181310-1
用電量(度)25354258
由表中數(shù)據(jù)得到線性回歸方程為$\hat y$=$\hat b$x+$\hat a$,由公式求得$\hat b$=-1.72.
(1)求$\hat a$的值;
(2)當氣溫為5oC時,預測用電量約為多少?(精確到1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.過點(0,$\sqrt{3}$)與圓C:(x-1)2+y2=4相切的直線方程為y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案