【題目】已知定義在上的函數(shù)對(duì)任意的都滿足,當(dāng)時(shí),,若函數(shù),且至少有6個(gè)零點(diǎn),則取值范圍是

A.B.

C.D.

【答案】A

【解析】

函數(shù)gx=fx-loga|x|的零點(diǎn)個(gè)數(shù),即函數(shù)y=fx)與y=loga|x|的交點(diǎn)的個(gè)數(shù);

fx+1=-fx),可得fx+2=fx+1+1=-fx+1=fx),

故函數(shù)fx)是周期為2的周期函數(shù),

又由當(dāng)-1≤x1時(shí),fx=x3,據(jù)此可以做出fx)的圖象,

y=loga|x|是偶函數(shù),當(dāng)x0時(shí),y=logax,則當(dāng)x0時(shí),y=loga-x),做出y=loga|x|的圖象:

結(jié)合圖象分析可得:要使函數(shù)y=fx)與y=loga|x|至少有6個(gè)交點(diǎn),則 loga51 loga5≥-1,

解得 a5,或.故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中是常數(shù)).

(Ⅰ)求過(guò)點(diǎn)與曲線相切的直線方程;

(Ⅱ)是否存在的實(shí)數(shù),使得只有唯一的正數(shù),當(dāng)時(shí)不等式恒成立,若這樣的實(shí)數(shù)存在,試求,的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若的一個(gè)極值點(diǎn),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)常數(shù))

1)當(dāng)時(shí),求函數(shù)上的單調(diào)區(qū)間;

2)當(dāng)時(shí),成立,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn),直線y軸交于點(diǎn)P.且與橢圓交于AB兩點(diǎn).A為橢圓的右頂點(diǎn),Bx軸上的射影恰為

1)求橢圓E的方程;

2M為橢圓E在第一象限部分上一點(diǎn),直線MP與橢圓交于另一點(diǎn)N,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)滿足是它的零點(diǎn),則函數(shù)有趣的,例如就是有趣的,已知有趣的”.

1)求出b、c并求出函數(shù)的單調(diào)區(qū)間;

2)若對(duì)于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面內(nèi)兩條直線相交于點(diǎn),構(gòu)成的四個(gè)角中的銳角為.對(duì)于平面上任意一點(diǎn),若,分別是到直線的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)是點(diǎn)的“距離坐標(biāo)”,給出下列四個(gè)命題:

點(diǎn)有且僅有兩個(gè);

點(diǎn)有且僅有4個(gè);

③若,則點(diǎn)的軌跡是兩條過(guò)點(diǎn)的直線;

④滿足的所有點(diǎn)位于一個(gè)圓周上.

其中正確命題的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論上的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),若存在,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,,的中點(diǎn),是等邊三角形,平面平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角大小的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案