【題目】已知矩陣將直線lxy-1=0變換成直線l′.

(1)求直線l′的方程;

(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請(qǐng)說明理由.

【答案】(1);(2)

【解析】試題分析:1任取直線上一點(diǎn)經(jīng)矩陣變換后點(diǎn)為,利用矩陣乘法得出坐標(biāo)之間的關(guān)系,求出直線的方程;(2)利用待定系數(shù)法,先假設(shè)所求的變換矩陣,再利用,建立方程組,解之即可.

試題解析:(1)在直線l上任取一點(diǎn)P(x0y0),

設(shè)它在矩陣A對(duì)應(yīng)的變換作用下變?yōu)?/span>Q(xy)

,

點(diǎn)P(x0,y0)在直線lxy-1=0上,10,

即直線l′的方程為4xy70.

(2)∵≠0,矩陣A可逆.設(shè)A1AA1,

解得A1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) ,圓 ,過的動(dòng)直線兩點(diǎn),線段中點(diǎn)為, 為坐標(biāo)原點(diǎn)。

1)求點(diǎn)的軌跡方程;

2)當(dāng)時(shí),求直線的方程以及面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為,離心率,且橢圓經(jīng)過點(diǎn).過右焦點(diǎn)的直線交橢圓, 兩點(diǎn).

)求橢圓的方程.

)若,求直線的方程.

)在線段上是否存在點(diǎn),使得以, 為鄰邊的四邊形是菱形,且點(diǎn)在橢圓上.若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點(diǎn)的動(dòng)直線相交于兩點(diǎn),拋物線在點(diǎn)和點(diǎn)處的切線相交于點(diǎn).

)寫出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

)求證:點(diǎn)在直線上;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為ab,c,滿足

(1)求角C的大;

(2)設(shè)函數(shù)f(x)=cos(2xC),將f(x)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細(xì)過程;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為, , 為整數(shù),且對(duì)任意都有

(1)求的通項(xiàng)公式;

(2)設(shè) 的前項(xiàng)和;

(3)在(2)的條件下,若數(shù)列滿足是否存在實(shí)數(shù),使得數(shù)列是單調(diào)遞增數(shù)列若存在,求出的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的箱子里裝有5個(gè)完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4、5.甲先從箱子中摸出一個(gè)小球,記下球上所標(biāo)數(shù)字后,將該小球放回箱子中搖勻后,乙從該箱子中摸出一個(gè)小球.

1)若甲、乙兩人誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(數(shù)字相同為平局),求甲獲勝的概率;

2規(guī)定:兩人摸到的球上所標(biāo)數(shù)字之和小于6則甲獲勝,否則乙獲勝,這樣規(guī)定公平嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).

1)若具有性質(zhì),且, ,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , 判斷是否具有性質(zhì),并說明理由;

3)設(shè)是無窮數(shù)列,已知.求證:對(duì)任意都具有性質(zhì)的充要條件為是常數(shù)列”.

查看答案和解析>>

同步練習(xí)冊(cè)答案