6.在等差數(shù)列{an}中,已知a15=26,S15=180,求a1和d.

分析 根據(jù)等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,即可求出a1和d的值.

解答 解:等差數(shù)列{an}中,a15=26,S15=180,
∴S15=$\frac{15{(a}_{1}{+a}_{15})}{2}$=$\frac{15{(a}_{1}+26)}{2}$=180,
解得a1=-2,
又a15=a1+14d=-2+14d=26,
∴d=2.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知z1,z2∈C,若|z1|=5,z2=3+4i,z1•$\overline{z_2}$是純虛數(shù),求z1
(2)在平行四邊形ABCD中,點(diǎn)A,B,C分別對應(yīng)復(fù)數(shù)2+i,4+3i,3+5i,求點(diǎn)D對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C:y=2x3-3x2-2x+1,點(diǎn)P($\frac{1}{2}$,0),
(1)求過點(diǎn)P的切線l的方程;
(2)求切線l與曲線C所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出以下四個(gè)命題,其中真命題的序號為①④.
①若命題p:“?x∈R,使得x2+x+1<0”,則?p:“?x∈R,均有x2+x+1≥0”;
②線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
④若x,y滿足x2+y2+xy=1,則x+y的最大值為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,若a1+a4+a7=12,且a2+a5+a8=15,則a3+a6+a9=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知i是虛數(shù)單位.
(Ⅰ)若復(fù)數(shù)z滿足(z+i)2=2i,求復(fù)數(shù)z;
(Ⅱ)若復(fù)數(shù)z=$\frac{2a+i}{-1+2i}$為純虛數(shù),求實(shí)數(shù)a的值及|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}的公差d=$\frac{1}{2}$,a2+a4+a6+…+a100=85,則a1+a2+a3+…+a99+a100的值為( 。
A.120B.145C.150D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,設(shè)向量$\overrightarrow{a}$=(cosθ,1),$\overrightarrow$=(sinθ,-1),其中θ∈[0,π].
(1)若θ=$\frac{π}{12}$,求數(shù)量積$\overrightarrow{a}$$•\overrightarrow$;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項(xiàng)等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an,bn
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案