【題目】已知橢圓:的離心率,且圓過橢圓的上,下頂點(diǎn).
(1)求橢圓的方程.
(2)若直線的斜率為,且直線交橢圓于、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線與的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.
【答案】(1);(2)是,0.
【解析】
(1)根據(jù)已知條件,求出,即可得到橢圓方程;
(2)設(shè)直線的方程為,將其代入橢圓方程后,根據(jù)韋達(dá)定理以及斜率公式變形,可得答案.
(1)因?yàn)閳A過橢圓的上,下頂點(diǎn),所以,
又離心率,所以,
于是有,解得,.所以橢圓的方程為;
(2)由于直線的斜率為,可設(shè)直線的方程為,代入橢圓:,
可得.
由于直線交橢圓于、兩點(diǎn),所以,
整理解得
設(shè)點(diǎn)、,由于點(diǎn)與點(diǎn)關(guān)于原點(diǎn)的對稱,故點(diǎn),
于是有,.
若直線與的斜率分別為,,由于點(diǎn),
則,
又∵,.
于是有
,
故直線與的斜率之和為0,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平分...
(1)設(shè)E是的中點(diǎn),求證:平面;
(2)設(shè)平面,若與平面所成的角為45°,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時,討論的單調(diào)性;
(2)若,且當(dāng)時,不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象向右平移個單位長度,再把所得的函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,關(guān)于的說法有:①函數(shù)的圖象關(guān)于點(diǎn)對稱;②函數(shù)的圖象的一條對稱軸是;③函數(shù)在上的最上的最小值為;④函數(shù)上單調(diào)遞增,則以上說法正確的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是自然對數(shù)的底數(shù),,已知函數(shù),.
(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)對于,證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)線性回歸分析的四個命題:
①線性回歸直線必過樣本數(shù)據(jù)的中心點(diǎn)();
②回歸直線就是散點(diǎn)圖中經(jīng)過樣本數(shù)據(jù)點(diǎn)最多的那條直線;
③當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);
④如果兩個變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于.
其中真命題的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進(jìn)行下一場比賽,負(fù)者下一場輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進(jìn)行第五場比賽的概率;
(3)求丙最終獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專項(xiàng)規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識與意義,并采購分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機(jī)抽取了200位居民進(jìn)行問卷調(diào)查,每位居民對小區(qū)采取的措施給出“滿意”或“不滿意”的評價.根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.
(1)完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異
滿意 | 不滿意 | 總計(jì) | |
51歲及以上的居民 | |||
50歲及以下的居民 | |||
總計(jì) | 200 |
(2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機(jī)抽取5份,再從這5份調(diào)查問卷中隨機(jī)抽取2份進(jìn)行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附表及參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com