【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進(jìn)行了專項規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識與意義,并采購分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機(jī)抽取了200位居民進(jìn)行問卷調(diào)查,每位居民對小區(qū)采取的措施給出“滿意”或“不滿意”的評價.根據(jù)調(diào)查結(jié)果統(tǒng)計并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.

1)完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異

滿意

不滿意

總計

51歲及以上的居民

50歲及以下的居民

總計

200

2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機(jī)抽取5份,再從這5份調(diào)查問卷中隨機(jī)抽取2份進(jìn)行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附表及參考公式:,其中.

【答案】1)列聯(lián)表答案見解析,有95﹪的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異.(2

【解析】

1)依題意完善列聯(lián)表,計算出卡方,再與參考值比較即可得解;

2)“51歲以上”居民抽到2份記為:; “50歲以下”居民抽到3份記為:. 再用列舉法列出所有可能結(jié)果,最后根據(jù)古典概型的概率公式計算可得;

解:(1)在這200份問卷中,持滿意態(tài)度的頻數(shù)為,持不滿意態(tài)度和頻數(shù)為,∴列聯(lián)表如下:

滿意

不滿意

總計

51歲以上的居民

45

35

80

50歲以下的居民

85

35

120

總計

130

70

200

.

故有95﹪的把握認(rèn)為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異.

2)利用分層抽樣的特點(diǎn)可知:“51歲以上”居民抽到2份記為:

50歲以下”居民抽到3份記為:.

∴基本事件共有:

,共有10個. 滿足條件的事件有:

,共有6個.

∴求得電話家訪的兩位居民恰好一位年齡在“51歲以上”,另一位年齡在“50歲以下”

的概率為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.F且與x軸垂直的直線交C1A,B兩點(diǎn),交C2C,D兩點(diǎn),且|CD|=|AB|.

1)求C1的離心率;

2)設(shè)MC1C2的公共點(diǎn),若|MF|=5,求C1C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理)某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制各等級劃分標(biāo)準(zhǔn)見下表,規(guī)定:三級為合格等級,為不合格等級.

百分制

85分及以上

70分到84

60分到69

60分以下

等級

為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.,

1)求和頻率分布直方圖中的的值;

2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生任選3人,求至少有1人成績是合格等級的概率;

3)在選取的樣本中,從兩個等級的學(xué)生中隨機(jī)抽取了3名學(xué)生進(jìn)行調(diào)研,記表示所抽取的名學(xué)生中為等級的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)(,f())處的切線與y軸垂直.

1)求b

2)若有一個絕對值不大于1的零點(diǎn),證明:所有零點(diǎn)的絕對值都不大于1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,湖北省武漢市等多個地區(qū)發(fā)生新型冠狀病毒感染的肺炎疫情.為了盡快遏制住疫情,我國科研工作者堅守在科研一線,加班加點(diǎn)爭分奪秒與病毒抗?fàn)帲挂岳^日地進(jìn)行研究.新型冠狀病毒的潛伏期檢測是疫情控制的關(guān)鍵環(huán)節(jié)之一.在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或?qū)C(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.鐘南山院士帶領(lǐng)的研究團(tuán)隊統(tǒng)計了武漢市某地區(qū)10000名醫(yī)學(xué)觀察者的相關(guān)信息,并通過咽拭子核酸檢測得到1000名確診患者的信息如下表格:

潛伏期(單位:天)

人數(shù)

800

190

8

2

1)求這1000名確診患者的潛伏期樣本數(shù)據(jù)的平均數(shù)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值代表).

2)新型冠狀病毒的潛伏期受諸多因素影響,為了研究潛伏期與患者性別的關(guān)系,以潛伏期是否超過7天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取100名,得到如下列聯(lián)表.請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為潛伏期與患者性別有關(guān).

潛伏期≤7

潛伏期>7

總計

男性患者

12

女性患者

50

總計

100

3)由于采樣不當(dāng)標(biāo)本保存不當(dāng)采用不同類型的標(biāo)本以及使用不同廠家試劑都可能造成核酸檢測結(jié)果假陰性而出現(xiàn)漏診.當(dāng)核酸檢測呈陰性時,需要進(jìn)一步進(jìn)行血清學(xué)抗體檢測,以彌補(bǔ)核酸檢測漏診的缺點(diǎn).現(xiàn)對10名核酸檢測結(jié)果呈陰性的人員逐一地進(jìn)行血清檢測,記每個人檢測出是近期感染的標(biāo)志)呈陽性的概率為且相互獨(dú)立,設(shè)至少檢測了9個人才檢測出呈陽性的概率為,求取得最大值時相應(yīng)的概率

附:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ()的一個焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,

1)求處的切線的一般式方程;

2)請判斷的圖像有幾個交點(diǎn)?

3)設(shè)為函數(shù)的極值點(diǎn),的圖像一個交點(diǎn)的橫坐標(biāo),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進(jìn)行參保與理賠.該保險公司對5個險種參?蛻暨M(jìn)行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參?傎M(fèi)用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

同步練習(xí)冊答案