【題目】(理)某學校高一年級學生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內(nèi),發(fā)布成績使用等級制各等級劃分標準見下表,規(guī)定:三級為合格等級,為不合格等級.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 |
為了解該校高一年級學生身體素質(zhì)情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.,
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,若在該校高一學生任選3人,求至少有1人成績是合格等級的概率;
(3)在選取的樣本中,從兩個等級的學生中隨機抽取了3名學生進行調(diào)研,記表示所抽取的名學生中為等級的學生人數(shù),求隨機變量的分布列及數(shù)學期望.
【答案】(1);,(2)(3)分布列見解析,期望為
【解析】
1)根據(jù)莖葉圖得人數(shù),再根據(jù)頻率分布直方圖得概率,最后根據(jù)頻數(shù)、總數(shù)與頻率關(guān)系得根據(jù)莖葉圖得人數(shù),根據(jù)頻數(shù)、總數(shù)與頻率關(guān)系得概率,最后根據(jù)頻率分布直方圖求根據(jù)所有頻率和為1得概率,再根據(jù)頻率分布直方圖頻率求(2)先求無合格等級的事件概率,再根據(jù)對立事件求結(jié)果,(3)先確定隨機變量取法,再分別求對應概率,列表得分布列,最后根據(jù)數(shù)學期望公式求結(jié)果.
(1);,
(2)設至少有1人成績是合格等級的事件為
(3)由題意可知等級的學生人數(shù)為人,等級的學生人數(shù)為3人,故的取值為
,
,
,
.
所以的分布列為:
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù)的圖象向右平移個單位長度,再把所得的函數(shù)圖象上所有點的橫坐標縮短到原來的(縱坐標不變)得到函數(shù)的圖象,關(guān)于的說法有:①函數(shù)的圖象關(guān)于點對稱;②函數(shù)的圖象的一條對稱軸是;③函數(shù)在上的最上的最小值為;④函數(shù)上單調(diào)遞增,則以上說法正確的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三位同學進行羽毛球比賽,約定賽制如下:累計負兩場者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場比賽的勝者與輪空者進行下一場比賽,負者下一場輪空,直至有一人被淘汰;當一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設每場比賽雙方獲勝的概率都為,
(1)求甲連勝四場的概率;
(2)求需要進行第五場比賽的概率;
(3)求丙最終獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大報告要求,確保到2020年我國現(xiàn)行標準下農(nóng)村貧困人口實現(xiàn)脫貧,貧困縣全部摘帽,解決區(qū)域性整體貧困,做到脫真貧、真脫貧.某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領(lǐng)農(nóng)村地區(qū)人民群眾脫貧奔小康,扶貧辦計劃為某農(nóng)村地區(qū)購買農(nóng)機機器,假設該種機器使用三年后即被淘汰.農(nóng)機機器制造商對購買該機器的客戶推出了兩種銷售方案:
方案一:每臺機器售價7000元,三年內(nèi)可免費保養(yǎng)2次,超過2次每次收取保養(yǎng)費200元;
方案二:每臺機器售價7050元,三年內(nèi)可免費保養(yǎng)3次,超過3次每次收取保養(yǎng)費100元.
扶貧辦需要決策在購買機器時應該選取那種方案,為此搜集并整理了50臺這種機器在三年使用期內(nèi)保養(yǎng)的次數(shù),得下表:
保養(yǎng)次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
臺數(shù) | 1 | 10 | 19 | 14 | 4 | 2 |
記x表示1臺機器在三年使用期內(nèi)的保養(yǎng)次數(shù).
(1)用樣本估計總體的思想,求“x不超過3”的概率;
(2)按照兩種銷售方案,分別計算這50臺機器三年使用期內(nèi)的總費用(總費用=售價+保養(yǎng)費),以每臺每年的平均費用作為決策依據(jù),扶貧辦選擇那種銷售方案購買機器更合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點且橢圓的短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線過右焦點,且與橢圓分別交于兩點.試問軸上是否存在定點,使得,恒成立?若存在求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專項規(guī)定.某小區(qū)采取一系列措施,宣傳垃圾分類的知識與意義,并采購分類垃圾箱.為了了解垃圾分類的效果,該小區(qū)物業(yè)隨機抽取了200位居民進行問卷調(diào)查,每位居民對小區(qū)采取的措施給出“滿意”或“不滿意”的評價.根據(jù)調(diào)查結(jié)果統(tǒng)計并做出年齡分布條形圖和持不滿意態(tài)度的居民的結(jié)構(gòu)比例圖,如圖,在這200份問卷中,持滿意態(tài)度的頻率是0.65.
(1)完成下面的列聯(lián)表,并判斷能否有的把握認為“51歲及以上”和“50歲及以下”的居民對該小區(qū)采取的措施的評價有差異
滿意 | 不滿意 | 總計 | |
51歲及以上的居民 | |||
50歲及以下的居民 | |||
總計 | 200 |
(2)按“51歲及以上”和“50歲及以下”的年齡段采取分層抽樣的方法從中隨機抽取5份,再從這5份調(diào)查問卷中隨機抽取2份進行電話家訪,求電話家訪的兩位居民恰好一位年齡在51歲及以上,另一位年齡在50歲及以下的概率.
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附表及參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是拋物線的焦點,過點且與坐標軸不垂直的直線交拋物線于、兩點,交拋物線的準線于點,其中,.過點作軸的垂線交拋物線于點,直線交拋物線于點.
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com