8.“a≥-3”是“xex+x2+ax+1>0在(0,+∞)恒成立”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 x∈(0,+∞),xex+x2+ax+1>0化為:-a<$({e}^{x}+x+\frac{1}{x})$.令f(x)=ex+x+$\frac{1}{x}$,x∈(0,+∞),利用幾何畫板可得圖象:即可判斷出結(jié)論.

解答 解:∵x∈(0,+∞),
∴xex+x2+ax+1>0化為:-a<$({e}^{x}+x+\frac{1}{x})$.
令f(x)=ex+x+$\frac{1}{x}$,x∈(0,+∞),
利用幾何畫板可得圖象:
由圖象可得:f(x)min>4,
∴-a<4,
∴a>-4.
∴a≥-3是xex+x2+ax+1>0在(0,+∞)上的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了幾何畫板的應(yīng)用、恒成立問題的等價(jià)轉(zhuǎn)化方法、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知${C}_{12}^{x-2}$=${C}_{12}^{2x-4}$,則x的值是2或6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在數(shù)列{an}中,a1=1,an=1-$\frac{1}{{a}_{n-1}+1}$(n≥2),則a3=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.由①安夢怡是高二(21)班學(xué)生;②安夢怡是獨(dú)生子女,③高二(21)班的學(xué)生都是獨(dú)生子女,寫一個“三段論”形式的推理,則大前提,小前提和結(jié)論分別為( 。
A.②①③B.③①②C.①②③D.②③①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},則M∩N=( 。
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)命題p:?x0∈(0,+∞),e${\;}^{{x}_{0}}$+x0=e,命題q:,若圓C1:x2+y2=a2與圓C2:(x-b)2+(y-c)2=a2相切,則b2+c2=2a2.那么下列命題為假命題的是(  )
A.¬qB.¬pC.(¬p)∨(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用0,1,…,199給200個零件編號,并用系統(tǒng)抽樣的方法從中抽取10件作為樣本進(jìn)行質(zhì)量檢測,若第一段中編號為5的零件被取出,則第二段被取出的零件編號是(  )
A.25B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l:y=kx+b,曲線C:x2+(y-1)2=1,則“b=1”是“直線l與曲線C有公共點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a>0,a≠1,等比數(shù)列{an},a1=a,公比q=a,又?jǐn)?shù)列{bn}的前n項(xiàng)和為Sn,Sn-Sn-1=lga${\;}_{n}^{{a}_{n}}$,(n≥2),b1=alga
(Ⅰ)求Sn;
(Ⅱ)要使數(shù)列{bn}中的每一項(xiàng)總不大于它后面的項(xiàng),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案