分析 通過對an=1-$\frac{1}{{a}_{n-1}+1}$(n≥2)兩邊同時取倒數(shù),進(jìn)而構(gòu)造首項、公差均為1的等差數(shù)列{$\frac{1}{{a}_{n}}$},代入計算即得結(jié)論.
解答 解:∵an=1-$\frac{1}{{a}_{n-1}+1}$=$\frac{{a}_{n-1}}{{a}_{n-1}+1}$(n≥2),
∴$\frac{1}{{a}_{n}}$=$\frac{{a}_{n-1}+1}{{a}_{n-1}}$=1+$\frac{1}{{a}_{n-1}}$(n≥2),
∵$\frac{1}{{a}_{1}}$=1,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是首項、公差均為1的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=n,an=$\frac{1}{n}$,
故答案為:$\frac{1}{3}$.
點評 本題考查數(shù)列的通項,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 大前提錯誤 | B. | 小前提錯誤 | C. | 結(jié)論正確 | D. | 推理形式錯誤 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A. | 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)” | |
B. | 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)” | |
C. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)” | |
D. | 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂與性別無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com