7.如圖,∠BAC=$\frac{2π}{3}$,P為∠BAC內(nèi)部一點(diǎn),過點(diǎn)P的直線與∠BAC的兩邊交于點(diǎn)B,C,且PA⊥AC,AP=$\sqrt{3}$.
(Ⅰ)若AB=3,求PC;
(Ⅱ)求$\frac{1}{PB}$$+\frac{1}{PC}$的取值范圍.

分析 (Ⅰ)根據(jù)余弦定理求出PB的長(zhǎng),再解直角三角形即可求出答案,
(Ⅱ)根據(jù)正弦定理得PB=$\frac{AP}{2sin(θ-\frac{π}{6})}$,在Rt△APC中,PC=$\frac{AP}{cosθ}$,繼而得到于是$\frac{1}{PB}$+$\frac{1}{PC}$=sinθ,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案.

解答 解:(Ⅰ)在△PAB中,由余弦定理知PB2=AP2+AB2-2AP•ABcos$\frac{π}{6}$=3,得PB=$\sqrt{3}$=AP,
則∠BPA=$\frac{2π}{3}$,∠APC=$\frac{π}{3}$,
在Rt△APC中,PC=$\frac{AP}{cos\frac{π}{3}}$=2$\sqrt{3}$,
(Ⅱ)因?yàn)椤螦PC=θ,則∠ABP=θ-$\frac{π}{6}$,
在Rt△APC中,PC=$\frac{AP}{cosθ}$,
在△PAB中,由正弦定理知$\frac{AP}{sin(θ-\frac{π}{6})}$=$\frac{PB}{sin\frac{π}{6}}$,得PB=$\frac{AP}{2sin(θ-\frac{π}{6})}$,
于是$\frac{1}{PB}$+$\frac{1}{PC}$=$\frac{2sin(θ-\frac{π}{6})}{AP}$+$\frac{cosθ}{AP}$=$\frac{\sqrt{3}sinθ}{AP}$=sinθ,
由題意知$\frac{π}{6}$<θ<$\frac{π}{2}$,
故$\frac{1}{2}$<sinθ<1,
即$\frac{1}{PB}$+$\frac{1}{PC}$的取值范圍為($\frac{1}{2}$,1)

點(diǎn)評(píng) 本題考查了正弦定理和余弦定理以及正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}+1,x>3\\{4^x}-4,x≤3\end{array}$,若f(a)=f(2),且a≠2,則f(2a)=122.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若兩個(gè)球的體積之比為1:8,則這兩個(gè)球的表面積之比為( 。
A.1:2B.1:4C.1:8D.1:16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,a∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若不等式f(x)>0在區(qū)間(0,$\frac{1}{2}$)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線(實(shí)線和虛線)為某幾何體的三視圖,則該幾何體外接球的表面積為( 。
A.24πB.29πC.48πD.58π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知復(fù)數(shù)z1=3+4i,z2=t-i,且z1•$\overline{{z}_{2}}$是實(shí)數(shù),則實(shí)數(shù)t=( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{4}{3}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,則( 。
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)y=ax+f(x)在區(qū)間(0,e]上的最大值為-4,求實(shí)數(shù)a的值;
(2)若函數(shù)y=ag(2x)+bg(x)-x有兩個(gè)不同的零點(diǎn)x1,x2,x0是x1,x2的等差數(shù)列,證明:當(dāng)a>0時(shí),不等式2ag(2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是(  )
A.?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.a∈R,“$\frac{1}{a}$<1“是“a>1“的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.“若am2<bm2,則a<b”的逆命題為真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案