【題目】20191115日,我市召開全市創(chuàng)建全國文明城市動(dòng)員大會(huì),會(huì)議向全市人民發(fā)出動(dòng)員令,吹響了集結(jié)號(hào).為了了解哪些人更關(guān)注此活動(dòng),某機(jī)構(gòu)隨機(jī)抽取了年齡在1575歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在內(nèi)的人分別稱為青少年人中老年人,經(jīng)統(tǒng)計(jì)青少年人中老年人的人數(shù)之比為.

1)求圖中的值,若以每個(gè)小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值

2)若青少年人中有15人關(guān)注此活動(dòng),根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問能否有的把握認(rèn)為中老年人青少年人更加關(guān)注此活動(dòng)?

【答案】1,;(2)填表見詳解;沒有把握認(rèn)為中老年人比青少年人更加關(guān)注此活動(dòng)

【解析】

1)依題意,青少年人,中老年人的頻率分別為,

,

由頻率分布直方圖中的平均數(shù)計(jì)算公式可得:

綜上所述:,,.

2)由題意可知,青少年人共有,中老年人共有

完成列聯(lián)表如下:

關(guān)注

不關(guān)注

合計(jì)

青少年人

15

25

40

中老年人

35

25

60

合計(jì)

50

50

100

結(jié)合列聯(lián)表

故沒有把握認(rèn)為中老年人比青少年人更加關(guān)注此活動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】斐波那契數(shù)列()又稱黃金分割數(shù)列,因數(shù)學(xué)家列昂納多斐波那契()以兔子繁殖為例子而引入,故又稱為兔子數(shù)列”.在數(shù)學(xué)上,斐波納契數(shù)列被以下遞推的方法定義:數(shù)列滿足:,,現(xiàn)從數(shù)列的前2024項(xiàng)中隨機(jī)抽取1項(xiàng),能被3整除的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在x軸上的橢圓E經(jīng)過點(diǎn),且焦距為.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)直線與橢圓E交于不同的兩點(diǎn)AB,線段AB的垂直平分線交y軸于點(diǎn)M,若,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓上兩點(diǎn),過點(diǎn)且斜率為的兩條直線與橢圓的交點(diǎn)分別為.

(Ⅰ)求橢圓的方程及離心率;

(Ⅱ)若四邊形為平行四邊形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】陸良縣2017屆和2018屆都取得了輝煌的成績,兩年均有人考入清華大學(xué)或北京大學(xué),600分以上的考生進(jìn)一步創(chuàng)歷史新高.對(duì)此北辰中學(xué)某學(xué)習(xí)興趣小組對(duì)201920名學(xué)生的數(shù)學(xué)成績進(jìn)行了調(diào)查,所得分?jǐn)?shù)分組為,,,,據(jù)此制作的頻率分布直方圖如圖所示.

1)求出直方圖中的值;

2)利用直方圖估計(jì)201920名學(xué)生分?jǐn)?shù)的眾數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

3)若從分?jǐn)?shù)在的學(xué)生中,隨機(jī)的抽取2名學(xué)生進(jìn)行輔導(dǎo),求抽到的學(xué)生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐PABC的各頂點(diǎn)都在同一球面上,底面ABC,若,,且,則下列說法正確的是(

A.是鈍角三角形B.此球的表面積等于

C.平面PACD.三棱錐APBC的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),若關(guān)于x的方程f(x)kx恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點(diǎn)E,F分別為棱DCBC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).

求證:(1)直線平面EFG

2)直線平面SDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為2,分別以,為一邊在空間中作正三角形,,延長到點(diǎn),使,連接,

1)證明:平面

2)求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案