3.某一歌劇院,共有25排座位,最前面一排有20個座位,每后一排比前一排多2個座位,問這歌劇院共有多少個座位?

分析 由題意可知,可以看做以20為首項,以2為公差的等差數(shù)列,根據(jù)等差數(shù)列的前n項和公式計算即可.

解答 解:因為最前面一排有20個座位,每后一排比前一排多2個座位,
所以可以看做以20為首項,以2為公差的等差數(shù)列
所以S25=25×20+$\frac{25(25-1)×2}{2}$=1100.
故這歌劇院共有1100個座位.

點評 本題考查了等差數(shù)列的定義和前n項和公式,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.下列程序運行后,輸出的結(jié)果是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設a為實數(shù),函數(shù)f(x)=x3-x2-x-a,若函數(shù)f(x)過點A(1,0),求函數(shù)在區(qū)間[-1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某工廠為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組檢測數(shù)據(jù)(x1,y1)(i=1,2,…6)如表所示:
試銷價格x(元)4567a9
產(chǎn)品銷量y(件)b8483807568
已知變量x,y具有線性負相關(guān)關(guān)系,且$\sum_{i=1}^{6}$xi=39,$\sum_{i=1}^{6}$yi=480,現(xiàn)有甲、乙、丙三位同學通過計算求得其歸直線方程分別為:甲y=4x+54;乙y=-4x+106;丙y=-4.2x+105,其中有且僅有一位同學的計算結(jié)果是正確的.
(1)試判斷誰的計算結(jié)果正確?并求出a,b的值;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)“,現(xiàn)從檢測數(shù)據(jù)中隨機抽取3個,求“理想數(shù)據(jù)“的個數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在△ABC中,角A,B,C所對邊長分別為a,b,c,若asinA+bsinB=2csinC,則cosC的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知(2x-1)n=a0+a1x+a2x2+…+anxn,且n是偶數(shù),則a0+$\frac{1}{2}$a1+$\frac{1}{3}$a2+$\frac{1}{4}$a3+…+$\frac{1}{n}$an-1+$\frac{1}{n+1}$an=$\frac{1}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期為π
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若f($\frac{a}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,且α、β∈(-$\frac{π}{2},\frac{π}{2}$),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若不等式x2-ax+1≥0對一切x∈(0,1]恒成立,則a的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.己知兩點A(-3,0)、B(3,0),動點M滿足直線AM、BM的斜率之積為-$\frac{4}{9}$.動點M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若∠AMB為鈍角,求點M的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案