一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
3
B、
3
C、
4
D、
2
考點:由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由三視圖可知:該幾何體是一個組合體,上面是一個
1
4
球,下面是一個圓柱.即可得出答案.
解答: 解:由三視圖可知:該幾何體是一個組合體,上面是一個
1
4
球,下面是一個圓柱.
該幾何體的體積V=
1
4
×
3
×13+π×12×1=
3

故選:B
點評:本題考查的知識點是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在一封閉的正方體容器內(nèi)裝滿水,M、N分別是AA1與C1D1的中點,由于某種原因,在D、M、N三點處各有一個小洞,為此容器內(nèi)存水最多,問應(yīng)將此容器如何放置?此時水的上表面的形狀怎樣?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(  )
A、(2+
5
)π
B、4π
C、(2+2
2
)π
D、6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
e1
、
e2
的夾角為60°,則|2
e1
+3
e2
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,AB=AC,BC=4,∠BAC=90°,
BE
=3
EC
,若P是BC邊上的動點,則
AP
AE
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
1-mx
x-1
是奇函數(shù)(a>0,a≠1).
(1)求m的值;
(2)判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性;
(3)當(dāng)a=
1
2
時,若對于[3,4]上的每一個x的值,不等式f(x)>(
1
2
x+b恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:M(xM,yM),N(xN,yN)分別是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與兩條直線l1:y=m,l2:y=-m(A≥m≥0)的兩個交點,記S=|xN-xM|,則S(m)圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(
x
-
2
x2
8的展開式中:
(1)求系數(shù)絕對值最大的項;
(2)求二項式系數(shù)最大的項;
(3)求系數(shù)最大的項;
(4)求系數(shù)最小的項.

查看答案和解析>>

同步練習(xí)冊答案