19.已知$\overrightarrow a=({2,1}),\overrightarrow b=({-1,3})$,若存在向量$\overrightarrow c$使$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,則$|{\overrightarrow c}|$=$\sqrt{13}$.

分析 設(shè)$\overrightarrow{c}$=(x,y),由$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,可得$\left\{\begin{array}{l}{2x+y=4}\\{-x+3y=-9}\end{array}\right.$,解出x,y.即可得出.

解答 解:設(shè)$\overrightarrow{c}$=(x,y),∵$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,∴$\left\{\begin{array}{l}{2x+y=4}\\{-x+3y=-9}\end{array}\right.$,解得x=3,y=-2.
則$|{\overrightarrow c}|$=$\sqrt{{3}^{2}+(-2)^{2}}$=$\sqrt{13}$.
故答案為:$\sqrt{13}$

點評 本題考查了數(shù)量積運算性質(zhì)、模的計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x、y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{{x^2}-y≤0}\end{array}}\right.$,則$z=-\frac{1}{2}x+y$的取值范圍是$[-\frac{1}{16},\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=x2的圖象在點$({{x_0},{x_0}^2})$處的切線為m,若m也與函數(shù)y=lnx,x∈(0,1]的圖象相切,則x0必滿足( 。
A.$0<{x_0}<\frac{1}{2}$B.$\frac{1}{2}<{x_0}<1$C.$\frac{{\sqrt{2}}}{2}<{x_0}<\sqrt{2}$D.$\sqrt{2}<{x_0}<\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x≥0},N={x|x2<1},則M∩N=( 。
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若復(fù)數(shù)$\frac{a+2i}{1+i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則實數(shù)a的值為( 。
A.-2B.-6C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)$z=\frac{5i}{3-4i}$(i是虛數(shù)單位),則|z|=( 。
A.5B.$\sqrt{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知三角形ABC中,角A,B,C的對邊分別為a,b,c,若$sin2A=\sqrt{3}cos2A$,且角A為銳角.
(1)求三角形內(nèi)角A的大;
(2)若a=5,b=8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a+i=(b+i)(2-i)(其中a,b是實數(shù),i為虛數(shù)單位),則復(fù)數(shù)a+bi在復(fù)平面內(nèi)所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦點、右頂點和上頂點,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)過點P(0,2)作直線l 交橢圓于M,N 兩點,過M 作平行于x 軸的直線交橢圓于另外一點Q,連接NQ
,求證:直線NQ 經(jīng)過一個定點.

查看答案和解析>>

同步練習(xí)冊答案