精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,PA⊥底面ABCDBCAD,ABBC,,,MPD的中點.

1)求證:CM∥平面PAB;

2)求二面角的余弦值.

【答案】1)證明見解析(2

【解析】

1)取的中點,可證得四邊形為平行四邊形,從而得到,由線面平行判定定理可證得結論;

2)根據垂直關系可以為坐標原點建立空間直角坐標系,根據二面角的向量求法可求得結果.

1)如圖,取的中點,連接.

分別為的中點,,

,,四邊形為平行四邊形,

,又平面平面,平面.

2)由題意知:兩兩垂直,以為坐標原點,所在的直線分別為軸、軸、軸建立如圖所示的空間直角坐標系:

,,,,,

,,

設平面的法向量

,令,則,.

平面,為平面的一個法向量,

,

二面角為銳二面角,二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數

1)若關于的不等式恒成立,求的取值范圍;

2)當時,求證:

3)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

3)根據(2)的結論,能否提供更好的調查方法來估計該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的單調區(qū)間;

2)若關于的不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調查.

1)應從甲、乙、丙三個部門的員工中分別抽取多少人?

2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數,求隨機變量X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

1)求函數的單調減區(qū)間;

2)若函數在區(qū)間上的極大值為8,求在區(qū)間上的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網行業(yè)崗位分布條形圖,則下列結論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網行業(yè)中從事技術崗位的人數超過總人數的

C.互聯(lián)網行業(yè)中從事運營崗位的人數90后比80前多

D.互聯(lián)網行業(yè)中從事技術崗位的人數90后比80后多

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數方程為(t為參數,0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在統(tǒng)計學中,四分位數是指把一組數由小到大排列并分成四等份,處于三個分割點位置的數值為,,,其中是這組數的中位數,分別可看作這組數被分成的前后兩組數的中位數.利用四分位數可以繪制統(tǒng)計學中的箱形圖:先找出一組數的最大值、最小值和三個四分位數;然后連接畫出“箱子”,中位數在“箱子”中間;再將最大值和最小值與箱子相連接(如圖①).某老師繪制了一次數學小測驗中甲、乙、丙三個班級學生得分的箱形圖(如圖②),根據該圖判斷下列說法錯誤的是(

A.三個班級中,甲班分數的方差最小

B.三個班級中,乙班分數的極差最大

C.丙班得分低于80的學生人數多于得分高于80的學生人數

D.若每班有42個學生,則三個班級的第11名中,丙班的分數最高

查看答案和解析>>

同步練習冊答案