【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

【答案】1的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

2

【解析】

1)求導(dǎo)得到,計算單調(diào)性得到答案.

2)令,令,則,討論,,兩種情況,分別根據(jù)函數(shù)的單調(diào)性求最值得到答案.

(1),令,得,故,

,解得

,令,

故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;

(2)令

;令,則,

(。┊時,因為當時,,所以

所以上單調(diào)遞增.

又因為,所以當時,,從而上單調(diào)遞增,

,所以,即成立;

(ⅱ)當時,可得上單調(diào)遞增.

因為,,

所以存在,使得,且當時,

所以上單調(diào)遞減,又因為,所以當時,,從而上單調(diào)遞減,而

所以當時,,即不成立;

綜上所述,的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點滿足: .

1)求動點的軌跡的方程;

2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,若,,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點,(不與,重合).若直線與直線相交于點,試判斷點,是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201971日,《上海市生活垃圾管理條例》正式實施,生活垃圾要按照可回收物、有害垃圾、濕垃圾、干垃圾的分類標準進行分類,沒有垃圾分類和未投放到指定垃圾桶內(nèi)等會被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的濕垃圾隨意地投放到樓下的垃圾桶,若樓下分別放有可回收物、有害垃圾、濕垃圾、干垃圾四個垃圾桶,則該居民會被罰款和行政處罰的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店經(jīng)營各種兒童玩具,該網(wǎng)店老板發(fā)現(xiàn)該店經(jīng)銷的一種手腕可以搖動的款芭比娃娃玩具在某周內(nèi)所獲純利(元)與該周每天銷售這種芭比娃娃的個數(shù)(個)之間的關(guān)系如下表:

每天銷售芭比娃娃個數(shù)(個)

3

4

5

6

7

8

9

該周內(nèi)所獲純利(元)

66

69

74

81

89

90

91

1)由表中數(shù)據(jù)可推測線性相關(guān),求出回歸直線方程;

2)請你預(yù)測當該店每天銷售這種芭比娃娃20件時,每周獲純利多少?

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,當輸入的的值為4時,輸出的的值為2,則空白判斷框中的條件可能為( ).

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥底面ABCD,BCAD,ABBC,MPD的中點.

1)求證:CM∥平面PAB

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直圓O所在的平面,是圓O的一條直徑,C為圓周上異于AB的動點,D為弦的中點,.

1)證明:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)yfx)的導(dǎo)函數(shù),定義的導(dǎo)函數(shù),若方程0有實數(shù)解x0,則稱點(x0,fx0))為函數(shù)yfx)的拐點,經(jīng)研究發(fā)現(xiàn),所有的三次函數(shù)fx)=ax3+bx2+cx+da≠0)都有拐點,且都有對稱中心,其拐點就是對稱中心,設(shè)fx)=x33x23x+6,則f+f+……+f)=_____

查看答案和解析>>

同步練習(xí)冊答案