分析 (1)利用同角三角函數(shù)的基本關(guān)系,求得$tan({α-\frac{β}{2}})$的值.
(2)利用同角三角函數(shù)的基本關(guān)系求得cos($\frac{α}{2}$-β)的值,再利用兩角差的余弦公式求得$cos({\frac{α+β}{2}})$的值.
解答 解:(1)∵$0<β<\frac{π}{2}<α<π$,且$cos({α-\frac{β}{2}})=\frac{5}{13}$,
∴α-$\frac{β}{2}$為銳角,故sin(α-$\frac{β}{2}$)=$\sqrt{{1-cos}^{2}(α-β)}$=$\frac{12}{13}$,∴$tan({α-\frac{β}{2}})$=$\frac{5}{12}$.
(2)∵$sin({\frac{α}{2}-β})=\frac{3}{5}$,∴$\frac{α}{2}$-β為銳角,∴cos($\frac{α}{2}$-β)=$\sqrt{{1-sin}^{2}(\frac{α}{2}-β)}$=$\frac{4}{5}$,
∴$cos({\frac{α+β}{2}})$=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]
=cos(α-$\frac{β}{2}$)cos($\frac{α}{2}$-β)+sin(α-$\frac{β}{2}$)sin($\frac{α}{2}$-β)=$\frac{5}{13}$•$\frac{4}{5}$+$\frac{12}{13}$•$\frac{3}{5}$=$\frac{56}{65}$.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
應(yīng)納銳收入(元) | 稅率(%) |
不超過1500元 | 3 |
超過1500元至4500元 | 10 |
超過4500元至9000元 | 20 |
超過9000元至35000元 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,1) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com