【題目】已知函數(shù),

(1)當時,

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點,求c的取值范圍.

(2)當時,不等式對于任意正實數(shù)x恒成立,當c取得最大值時,求a,b的值.

【答案】(1),(2),

【解析】

(1)當時,,所以,①設(shè)切點為,列出方程組,即可求得,得到答案; ②由題意,得方程有正實數(shù)根,即方程有正實數(shù)根,記,利用導數(shù)求得函數(shù)的單調(diào)性與最小值,即可求解的取值范圍;

2)由題意得,當時,對于任意正實數(shù)恒成立,即當時,對于任意正實數(shù)恒成立, 由(1)可得,進而得到,

,得到時,,進而得到 對于任意正實數(shù)恒成立,再利用二次函數(shù)的性質(zhì),即可得到結(jié)論.

(1)解:當時,,所以

①設(shè)切點為,則

由②③得,

由①得代入④得,

所以

②由題意,得方程有正實數(shù)根,

即方程有正實數(shù)根,

,令,

時,;當時,;

所以上為減函數(shù),在上為增函數(shù);

所以

,則,不合;

,由①知適合;

,則,又,

所以,由零點存在性定理知上必有零點.

綜上,c的取值范圍為

(2)由題意得,當時,對于任意正實數(shù)x恒成立,

所以當時,對于任意正實數(shù)x恒成立,

由(1)知,,

兩邊同時乘以x得,,

兩邊同時加上得,,

所以(*),當且僅當時取等號.

對(*)式重復以上步驟①②可得,,

進而可得,,,……,

所以當,時,,當且僅當時取等號.

所以

取最大值1時,對于任意正實數(shù)x恒成立,

令上式中得, ,所以

所以對于任意正實數(shù)x恒成立,

對于任意正實數(shù)x恒成立,

所以,所以函數(shù)的對稱軸

所以,即,所以

又由,兩邊同乘以x2得,,

所以當,時,也恒成立,

綜上,得,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知參加某項活動的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導人的同側(cè),則不同的排法共有( )

A. 240種 B. 360種 C. 480種 D. 600種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,,利用上述性質(zhì),求的單調(diào)區(qū)間和值域;

2)對于(1)中的函數(shù)和函數(shù),若對任意的,總存在使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,點在拋物線上,過焦點的直線交拋物線兩點.

(1)求拋物線的方程以及的值;

(2)記拋物線的準線與軸交于點,若,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓C離心率為,其短軸長為2.

(1)求橢圓C的標準方程;

(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線POAQE,直線QOAPD,直線OP與直線OQ的斜率分別為,且,為非零實數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是

(1)命題“,”的否定是“”;

(2)l為直線,,為兩個不同的平面,若,,則;

(3)給定命題p,q,若“為真命題”,則是假命題;

(4)“”是“”的充分不必要條件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店經(jīng)營的某種消費品的進價為每件14元,月銷售量(百件)與每件的銷售價格(元)的關(guān)系如圖所示,每月各種開支2 000元.

(1)寫出月銷售量(百件)關(guān)于每件的銷售價格(元)的函數(shù)關(guān)系式.

(2)寫出月利潤(元)與每件的銷售價格(元)的函數(shù)關(guān)系式.

(3)當該消費品每件的銷售價格為多少元時,月利潤最大?并求出最大月利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面, .過的平面交于點,交于點.

(l)求證: 平面;

(Ⅱ)求證:

(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.

(1)求證: ;

(2)若 , ,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案