【題目】已知參加某項(xiàng)活動(dòng)的六名成員排成一排合影留念,且甲乙兩人均在丙領(lǐng)導(dǎo)人的同側(cè),則不同的排法共有( )

A. 240種 B. 360種 C. 480種 D. 600種

【答案】C

【解析】分析本題屬于有限制條件的排列問題,解題時(shí)可按照領(lǐng)導(dǎo)丙的位置分為6求出每一類的排法后再根據(jù)分類加法計(jì)數(shù)原理求解總的排法

詳解用分類討論的方法解決如圖中的6個(gè)位置,

1

2

3

4

5

6

①當(dāng)領(lǐng)導(dǎo)丙在位置1時(shí),不同的排法有

當(dāng)領(lǐng)導(dǎo)丙在位置2時(shí)不同的排法有;

當(dāng)領(lǐng)導(dǎo)丙在位置3時(shí),不同的排法有

當(dāng)領(lǐng)導(dǎo)丙在位置4時(shí),不同的排法有;

當(dāng)領(lǐng)導(dǎo)丙在位置5時(shí),不同的排法有;

當(dāng)領(lǐng)導(dǎo)丙在位置1時(shí),不同的排法有

由分類加法計(jì)數(shù)原理可得不同的排法共有480

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來隨著我國(guó)在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國(guó)內(nèi)企業(yè)的國(guó)際競(jìng)爭(zhēng)力得到大幅提升.某品牌公司一直默默拓展海外市場(chǎng),在海外設(shè)了多個(gè)分支機(jī)構(gòu),現(xiàn)需要國(guó)內(nèi)公司外派大量中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從中青年員工中隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計(jì)

中年員工

青年員工

合計(jì)

并參照附表,得到的正確結(jié)論是

附表:

0.10

0.01

0.001

2.706

6.635

10.828

A. 在犯錯(cuò)誤的概率不超過10%的前提下,認(rèn)為是否愿意外派與年齡有關(guān)

B. 在犯錯(cuò)誤的概率不超過10%的前提下,認(rèn)為是否愿意外派與年齡無關(guān)

C. 99% 以上的把握認(rèn)為是否愿意外派與年齡有關(guān);

D. 99% 以上的把握認(rèn)為是否愿意外派與年齡無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己6.(以下問題用數(shù)字作答)

1)邀請(qǐng)這6人去參加一項(xiàng)活動(dòng),必須有人去,去幾人自行決定,共有多少種不同的安排方法?

2)將這6人作為輔導(dǎo)員全部安排到3項(xiàng)不同的活動(dòng)中,求每項(xiàng)活動(dòng)至少安排1名輔導(dǎo)員的方法總數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;

(2)(1)的結(jié)論下,若關(guān)于的不等式當(dāng)時(shí)恒成立,的值;

(3)令,若關(guān)于的方程內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.

1)求的值;

2)求函數(shù)上的解析式;

3)若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2020年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,某產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費(fèi)用萬元,滿足為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬件,已知2020年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件,該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

1)將2020年該產(chǎn)品的利潤(rùn)(萬元)表示為年促銷費(fèi)用(萬元)的函數(shù);

2)該廠家2020年的促銷費(fèi)用投入多少萬元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》第八章方程問題八:今有賣牛二、羊五,以買十三豕,有余錢一千。賣牛三、豕三,以買九羊,錢適足.賣羊六、豕八,以買五牛,錢不足六百.問牛、羊、豕各幾何?如果賣掉2頭牛和5只羊,可買13口豬,還余1000錢;賣掉3頭牛和3口豬的錢恰好可買9只羊;而賣掉6只羊和8口豬,去買5頭牛,還少600.問牛、羊、豬的價(jià)格各是多少”.按照題意,可解出牛______錢、羊______錢、豬______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點(diǎn),求c的取值范圍.

(2)當(dāng)時(shí),不等式對(duì)于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案