11.函數(shù)f(x)=ax+lnx在x=1處的切線與直線x-y+1=0垂直,則實數(shù)a=-2.

分析 求出f(x)的導數(shù),可得切線的斜率,由兩直線垂直的條件:斜率之積為-1,解方程即可得到所求值.

解答 解:函數(shù)f(x)=ax+lnx的導數(shù)為f′(x)=a+$\frac{1}{x}$,
可得在x=1處的切線斜率為a+1,
由切線與直線x-y+1=0垂直,
可得a+1=-1,
解得a=-2.
故答案為:-2.

點評 本題考查導數(shù)的運用:求切線的斜率,考查導數(shù)的幾何意義,兩直線垂直的條件:斜率之積為-1,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.$\int_1^2{\frac{2}{x}}dx$=( 。
A.2ln2B.-2ln2C.ln2D.-ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在平面直角坐標系xOy中,已知點A(2a,0)(a>0),直線l1:mx-y-2m+2=0與直線l2:x+my=0(m∈R)相交于點M,且MA2+MO2=2a2+16,則實數(shù)a的取值范圍是[2,1+$\sqrt{17}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)y=x-lnx的單調(diào)遞減區(qū)間是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于命題P:存在一個常數(shù)M,使得不等式$\frac{a}{2a+b}+\frac{2b+a}≤M≤\frac{a}{a+2b}+\frac{b+2a}$對任意正數(shù)a,b恒成立.
(1)試給出這個常數(shù)M的值;
(2)在(1)所得結(jié)論的條件下證明命題P;
(3)對于上述命題,某同學正確地猜想了命題Q:“存在一個常數(shù)M,使得不等式$\frac{a}{3a+b}+\frac{3b+c}+\frac{c}{3c+a}≤M≤\frac{a}{a+3b}+\frac{b+3c}+\frac{c}{c+3a}$對任意正數(shù)a,b,c恒成立.”觀察命題P與命題Q的規(guī)律,請猜想與正數(shù)a,b,c,d相關(guān)的命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知:z(1+2i)=3-i,則$\overline z$=(  )
A.$1+\frac{7}{5}i$B.$\frac{1}{5}+\frac{7}{5}i$C.$\frac{1}{3}-\frac{7}{3}i$D.$\frac{5}{3}-\frac{7}{3}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知$cos(θ+\frac{π}{4})=\frac{3}{5}$,其中θ為銳角﹒
(1)求tanθ的值;
(2)求$\frac{{{{cos}^2}θ+sin2θ}}{{{{sin}^2}θ+1}}$的值﹒

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.直線l經(jīng)過原點O和點P(1,1),則其斜率為(  )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知兩個不同的動點A,B在橢圓$\frac{y^2}{8}+\frac{x^2}{4}=1$上,且線段AB的垂直平分線恒過點P(0,-1).求:(Ⅰ)線段AB中點M的軌跡方程;
(Ⅱ)線段AB長度的最大值.

查看答案和解析>>

同步練習冊答案