分析 (1)(2)(3)根據(jù)正弦函數(shù)的圖象及性質求解即可.
解答 解:函數(shù)f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{5}{4}$.
(1)最小正周期T=$\frac{2π}{2}$=π,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤$\frac{π}{2}+2kπ$,k∈Z.
得:$kπ-\frac{π}{3}$≤x≤$\frac{π}{6}+kπ$,
∴f(x)的單調(diào)增區(qū)間為[$kπ-\frac{π}{3}$,$\frac{π}{6}+kπ$].
(2)令2x+$\frac{π}{6}$=kπ$+\frac{π}{2}$
則x=$\frac{1}{2}kπ+\frac{π}{6}$,
∴對稱軸方程為x=$\frac{1}{2}kπ+\frac{π}{6}$,k∈Z.
令2x+$\frac{π}{6}$=kπ,
則x=$\frac{1}{2}$kπ$-\frac{π}{12}$,
所以對稱中心為($\frac{1}{2}$kπ$-\frac{π}{12}$,$\frac{5}{4}$),k∈Z.
(3)令sin(2x+$\frac{π}{6}$)=-1,即2x+$\frac{π}{6}$=$-\frac{π}{2}+2kπ$,
得:x=$-\frac{π}{3}$+kπ時,f(x)的取得最小值$\frac{3}{4}$.
此時x的取值集合是{x|x=$-\frac{π}{3}$+kπ,k∈Z}.
點評 本題主要考查對三角函數(shù)的化簡計算能力和三角函數(shù)的圖象和性質的運用.屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,18) | B. | ($\frac{3(\sqrt{5}-1)}{2}$,2] | C. | [2,$\frac{27-9\sqrt{5}}{2}$) | D. | (2,9-3$\sqrt{5}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({log_2}x)'=\frac{1}{xln2}$ | B. | $(x+\frac{1}{x})'=1+\frac{1}{x^2}$ | C. | (3x)'=3xlog3e | D. | (x2cosx)'=-2xsinx |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com