【題目】已知函數(shù),其中是函數(shù)的導(dǎo)數(shù), 為自然對(duì)數(shù)的底數(shù), (,).

(Ⅰ)求的解析式及極值;

(Ⅱ)若,求的最大值.

【答案】(Ⅰ),為極大值點(diǎn),且;(Ⅱ).

【解析】

(Ⅰ)先對(duì)函數(shù)求導(dǎo),令求出,再求出,即可得出解析式;再根據(jù)函數(shù)的導(dǎo)數(shù),確定函數(shù)的單調(diào)性,進(jìn)而可得出其極值;

(Ⅱ)先由,構(gòu)造函數(shù),對(duì)其求導(dǎo),分別討論,求出最小值,得到,再令,用導(dǎo)數(shù)的方法求最小值,即可得出結(jié)果.

(Ⅰ)由已知得,

, 得,即,

, ∴,

從而, ∴,

上遞增,且,

∴當(dāng)時(shí), ;當(dāng)時(shí), ,

為極大值點(diǎn),且.

(Ⅱ)由,

,得,

①當(dāng)時(shí), 上單調(diào)遞增,

時(shí), 相矛盾;

②當(dāng)時(shí), ,

當(dāng)時(shí), ,

,

,,

,則,

,,

當(dāng)時(shí), ,

即當(dāng),時(shí),

的最大值為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是各項(xiàng)均為正數(shù)的等差數(shù)列.

(1)若,且成等比數(shù)列,求數(shù)列的通項(xiàng)公式

(2)在(1)的條件下,數(shù)列的前和為,設(shè),若對(duì)任意的,不等式恒成立,求突數(shù)的最小值:

(3)若數(shù)列中有兩項(xiàng)可以表示位某個(gè)整數(shù)的不同次冪,求證:數(shù)列中存在無(wú)窮多項(xiàng)構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一枚質(zhì)地均勻的硬幣向上拋擲三次,下列兩個(gè)事件中,是對(duì)立事件的是(

A.事件恰有兩次正面向上,事件恰有兩次反面向上

B.事件恰有兩次正面向上,事件恰有一次正面向上

C.事件至少有一次正面向上,事件至多一次正面向上

D.事件至少有一次正面向上,事件恰有三次反面向上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),智能手機(jī)的更新?lián)Q代極其頻繁和快速,而青少年對(duì)新事物的追求更是強(qiáng)烈,為了調(diào)查大學(xué)生更換手機(jī)的時(shí)間,現(xiàn)對(duì)某大學(xué)中的大學(xué)生使用一部手機(jī)的年限進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的大學(xué)生中抽取了男生、女生各人進(jìn)行抽樣分析,制成如下的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估計(jì)男大學(xué)生使用手機(jī)年限的中位數(shù)和女大學(xué)生使用手機(jī)年限的眾數(shù);

2)根據(jù)頻率分布直方圖,求出男大學(xué)生和女大學(xué)生使用手機(jī)年限的平均值,并分析比較男大學(xué)生和女大學(xué)生哪個(gè)群體更換手機(jī)的頻率更高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)已知點(diǎn)M(0,-1),直線l經(jīng)過(guò)點(diǎn)N(2,1)且與橢圓C相交于A,B兩點(diǎn)(異于點(diǎn)M),記直線MA的斜率為,直線MB的斜率為,證明 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如圖.

1)求頻率分布直方圖中的值;

2)估計(jì)總體中成績(jī)落在中的學(xué)生人數(shù);

3)根據(jù)頻率分布直方圖估計(jì)名學(xué)生數(shù)學(xué)考試成績(jī)的眾數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為正項(xiàng)等比數(shù)列,a1+a2=6,a3=8.

(1)求數(shù)列{an}的通項(xiàng)公式an;

(2)若bn=,且{bn}前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、,若直線的圖像上存在點(diǎn),使得成立,則說(shuō)直線是“型直線”.給出下列直線:

1

2;

3;

4;

5(常數(shù)

其中代表“型直線”的序號(hào)是___________.(要求寫(xiě)出所有型直線的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案