19.已知拋物線y2=4x上一點A到焦點F的距離為3,則點A的坐標為(2,±2$\sqrt{2}$).

分析 根據(jù)題意,由拋物線的方程可得其焦點坐標以及準線方程,設(shè)所求點坐標為P(x,y),作PQ⊥l于Q,由拋物線的定義分析可得P到準線的距離等于P、Q的距離,即x+1=3,解可得x的值,將x的值代入拋物線方程即可得y的值,綜合即可得答案.

解答 解:∵拋物線方程為y2=4x,∴焦點為F(1,0),
準線為l:x=-1.
設(shè)所求點坐標為P(x,y),作PQ⊥l于Q.
根據(jù)拋物線定義可知P到準線的距離等于P、Q的距離,
即x+1=3,
解之得x=2,代入拋物線方程求得y=±2$\sqrt{2}$,
∴點P坐標為:(2,±2$\sqrt{2}$).
故答案為:(2,±2$\sqrt{2}$).

點評 本題考查拋物線的幾何性質(zhì),關(guān)鍵是利用拋物線的幾何性質(zhì)進行轉(zhuǎn)化.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.某地實行高考改革,考生除參加語文,數(shù)學,外語統(tǒng)一考試外,還需從物理,化學,生物,政治,歷史,地理六科中選考三科,要求物理,化學,生物三科至少選一科,政治,歷史,地理三科至少選一科,則考生共有多少種選考方法( 。
A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,sinA、sinB、sinC成等差數(shù)列,且$C-A=\frac{π}{3}$.
(Ⅰ)求cosB的值;
(Ⅱ)若$b=\sqrt{13}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在正四面體ABCD中,M,N分別是BC和DA的中點,則異面直線MN和CD所成角的余弦值為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元)2345
銷售額y(萬元)32354552
用最小二乘法算得的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\widehat$為7,據(jù)此預測廣告費用為6萬元時銷售額為( 。
A.58.5萬元B.77.5萬元C.59萬元D.70萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖:等邊三角形PAB所在的平面與Rt△ABC所在的平面互相垂直,D、E分別為AB、AC邊中點.已知AB⊥BC,AB=2,BC=2$\sqrt{3}$
(Ⅰ)證明:DE∥平面PBC;
(Ⅱ)證明:AB⊥PE;
(Ⅲ)求點D到平面PBE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x2sin$\frac{πx}{2}$,數(shù)列{an}中,an=f(n)-f(n+1)(n∈N*),則數(shù)列{an}的前100項之和S100=-10200.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=|2x+2|+|2x-4|.
(1)求不等式f(x)>8的解集;
(2)若存在x∈R,使不等式f(x)≤|2m-3|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.一組數(shù)據(jù)的平均數(shù)是4.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是( 。
A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.6

查看答案和解析>>

同步練習冊答案