14.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬(wàn)元)2345
銷售額y(萬(wàn)元)32354552
用最小二乘法算得的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\widehat$為7,據(jù)此預(yù)測(cè)廣告費(fèi)用為6萬(wàn)元時(shí)銷售額為(  )
A.58.5萬(wàn)元B.77.5萬(wàn)元C.59萬(wàn)元D.70萬(wàn)元

分析 首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點(diǎn),根據(jù)線性回歸直線過(guò)樣本中心點(diǎn),求出方程中的一個(gè)系數(shù),得到線性回歸方程,把自變量為6代入,預(yù)報(bào)出結(jié)果.

解答 解:由題意,$\overline{x}$=3.5,$\overline{y}$=41.代入回歸方程可得:41=7×3.5+$\stackrel{∧}{a}$,∴$\stackrel{∧}{a}$=16.5,
∴$\stackrel{∧}{y}$=7x+16.5,∴x=6時(shí),$\stackrel{∧}{y}$=7×6+16.5=58.5萬(wàn)元.
故選A.

點(diǎn)評(píng) 本題考查求回歸方程,考查利用回歸方程進(jìn)行預(yù)測(cè),解題的關(guān)鍵是根據(jù)回歸方程必過(guò)樣本中心點(diǎn),求出回歸系數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)A(0,-2),橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點(diǎn),且$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=1,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)A的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),當(dāng)△POQ的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè){an}是公比大于1的等比數(shù)列,Sn為其前n項(xiàng)和,已知S3=7,a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=an+lnan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知雙曲線C1:x2-y2=a2(a>0)關(guān)于直線y=x-2對(duì)稱的曲線為C2,若直線2x+3y=6與C2相切,則實(shí)數(shù)a的值為(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{8}{5}$C.$\frac{4}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=lnx-x3+2ex2-ax,a∈R,其中e為自然對(duì)數(shù)的底數(shù).
(1)若f(x)在x=e處的切線的斜率為e2,求a;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知拋物線y2=4x上一點(diǎn)A到焦點(diǎn)F的距離為3,則點(diǎn)A的坐標(biāo)為(2,±2$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}{x=2sinθ}\\{y=acosθ}\end{array}\right.$(θ為參數(shù),a>0)和曲線C2:$\left\{\begin{array}{l}{x=t+1}\\{y=2-2t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)若兩曲線有一個(gè)公共點(diǎn)在y軸上,求a的值;
(Ⅱ)當(dāng)a=2時(shí),判斷兩曲線的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過(guò)4噸的部分按2元/噸收費(fèi),超過(guò)4噸但不超過(guò)8噸的部分按4元/噸收費(fèi),超過(guò)8噸的部分按8元/噸收費(fèi).
(1)求居民月用水量費(fèi)用y(單位:元)關(guān)于月用電量x(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過(guò)抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過(guò)16元的占60%,求a,b的值;
(3)若地區(qū)居民用水量平均值超過(guò)6噸,則說(shuō)明該地區(qū)居民用水沒(méi)有節(jié)約意識(shí)在滿足(2)的條件下,請(qǐng)你估計(jì)A市居民用水是否有節(jié)約意識(shí)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}中,a4=6,a5+a7=24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案