已知AB是過橢圓
(a>b>0)的左焦點F
1的弦,則⊿ABF
2的周長是( )
試題分析:根據(jù)橢圓的定義可知:|F
1A|+|AF
2|=2a=,|F
1B|+|BF
2|=2a,
如圖所示:
∴△ABF
2的周長為|F
1A|+|AF
2|+|F
1B|+|BF
2|=4a,
故答案為D
點評:解決該試題的關(guān)鍵是由橢圓的定義可知:|F
1A|+|AF
2|=2a=,|F
1B|+|BF
2|=2a,再結(jié)合橢圓的圖象將其轉(zhuǎn)化為三角形的周長.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
和雙曲線
,有相同的焦點,則橢圓與雙曲線的離心率的平方和為( )
A. | B. | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的焦距是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的離心率是
,其焦點為
,P是雙曲線上一點,
且
,若
的面積等于9,則
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知橢圓C:
(a>b>0)的一個頂點為A(2,0),離心率為
,直線y=k(x-1)與橢圓C交于不同的兩點M、N.
①求橢圓C的方程.
②當(dāng)⊿AMN的面積為
時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線的方程為
,則它的一個焦點到一條漸進(jìn)線的距離是( )
A.2 B 4 C.
D. 12
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
設(shè)直線
與拋物線
交于不同兩點A、B,F(xiàn)為拋物線的焦點。
(1)求
的重心G的軌跡方程;
(2)如果
的外接圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
拋物線
的焦點為
,過點
的直線交拋物線于
,
兩點.
①若
,求直線
的斜率;
②設(shè)點
在線段
上運動,原點
關(guān)于點
的對稱點為
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在以點
為圓心,
為直徑的半圓
中,
,
是半圓弧上一點,
,曲線
是滿足
為定值的動點
的軌跡,且曲線
過點
.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線
的方程;
(Ⅱ)設(shè)過點
的直線l與曲線
相交于不同的兩點
、
若△
的面積不小于
,求直線
斜率的取值范圍.
查看答案和解析>>