拋物線
的焦點(diǎn)為
,過點(diǎn)
的直線交拋物線于
,
兩點(diǎn).
①若
,求直線
的斜率;
②設(shè)點(diǎn)
在線段
上運(yùn)動(dòng),原點(diǎn)
關(guān)于點(diǎn)
的對(duì)稱點(diǎn)為
,求四邊形
面積的最小值.
(Ⅰ)直線
的斜率是
.
(Ⅱ)
時(shí),四邊形
的面積最小,最小值是
.
本題考查直線斜率的求法,考查四邊形面積的最小值的求法,綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
(Ⅰ)依題意F(1,0),設(shè)直線AB方程為x=my+1.將直線AB的方程與拋物線的方程聯(lián)立,得y2-4my-4=0.由此能夠求出直線AB的斜率.
(Ⅱ)由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱,得M是線段OC的中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于2S△AOB.由此能求出四邊形OACB的面積最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
的焦點(diǎn)弦
坐標(biāo)分別為
,則
的值一定等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知AB是過橢圓
(a>b>0)的左焦點(diǎn)F
1的弦,則⊿ABF
2的周長(zhǎng)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
與直線
(
)的公共點(diǎn)的個(gè)數(shù)為( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分)已知橢圓
的離心率
,過右焦點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),當(dāng)直線
的斜率為1時(shí),坐標(biāo)原點(diǎn)
到直線
的距離為
.
(1)求橢圓
的方程
(2)橢圓
上是否存在點(diǎn)
,使得當(dāng)直線
繞點(diǎn)
轉(zhuǎn)到某一位置時(shí),有
成立?若存在,求出所有滿足條件的點(diǎn)
的坐標(biāo)及對(duì)應(yīng)直線方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
上一點(diǎn)到直線
的距離最短,則該點(diǎn)的坐標(biāo)是( )
A.(1, 2) | B.(0, 0) | C.(, 1) | D.(1, 4) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓方程為
,
、
為其左右焦點(diǎn),點(diǎn)
為橢圓上一點(diǎn),且
,
.
(1)求
的面積. (2)直線
過點(diǎn)
與橢圓交于
、
兩點(diǎn),若
為弦
的中點(diǎn),求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
△ABC一邊的兩個(gè)頂點(diǎn)為B(
3,0),C(3,0)另兩邊所在直線的斜率之積為
(
為常數(shù)),則頂點(diǎn)A的軌跡不可能落在下列哪一種曲線上( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線
(
為參數(shù))與圓
(
為參數(shù))相切,則
( )
查看答案和解析>>