【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬(wàn)元從政府購(gòu)得一塊廉價(jià)土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高0.02萬(wàn)元,已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為0.8萬(wàn)元.

(1)若學(xué)生宿舍建筑為層樓時(shí),該樓房綜合費(fèi)用為萬(wàn)元,綜合費(fèi)用是建筑費(fèi)用與購(gòu)地費(fèi)用之和),寫(xiě)出的表達(dá)式;

(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,學(xué)校應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少萬(wàn)元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元

【解析】

由已知求出第層樓房每平方米建筑費(fèi)用為萬(wàn)元,得到第層樓房建筑費(fèi)用,由樓房每升高一層,整層樓建筑費(fèi)用提高萬(wàn)元,然后利用等差數(shù)列前項(xiàng)和求建筑層樓時(shí)的綜合費(fèi)用;

設(shè)樓房每平方米的平均綜合費(fèi)用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時(shí),每平方米建筑費(fèi)用為萬(wàn)元,

且樓房每升高一層,整層樓每平方米建筑費(fèi)用提高萬(wàn)元,

可得建筑第1層樓房每平方米建筑費(fèi)用為:萬(wàn)元.

建筑第1層樓房建筑費(fèi)用為:萬(wàn)元

樓房每升高一層,整層樓建筑費(fèi)用提高:萬(wàn)元

建筑第x層樓時(shí),該樓房綜合費(fèi)用為:

;

設(shè)該樓房每平方米的平均綜合費(fèi)用為,

則:

當(dāng)且僅當(dāng),即時(shí),上式等號(hào)成立.

學(xué)校應(yīng)把樓層建成10層,此時(shí)平均綜合費(fèi)用為每平方米萬(wàn)元.

【點(diǎn)睛】

本題考查簡(jiǎn)單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項(xiàng)和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對(duì)稱(chēng)軸方程;

(2)若,求的值域.

【答案】(1)對(duì)稱(chēng)軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進(jìn)行化簡(jiǎn)得到,由周期公式和對(duì)稱(chēng)軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對(duì)稱(chēng)軸為,最小正周期;

(2)當(dāng)時(shí),,

因?yàn)?/span>單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)

(1)求的值;

(2)求,求的值;

(3)畫(huà)出函數(shù)的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)線(xiàn)性回歸分析的六個(gè)命題:

①線(xiàn)性回歸直線(xiàn)必過(guò)樣本數(shù)據(jù)的中心點(diǎn);

②回歸直線(xiàn)就是散點(diǎn)圖中經(jīng)過(guò)樣本數(shù)據(jù)點(diǎn)最多的那條直線(xiàn);

③當(dāng)相關(guān)性系數(shù)時(shí),兩個(gè)變量正相關(guān);

④如果兩個(gè)變量的相關(guān)性越強(qiáng),則相關(guān)性系數(shù)就越接近于1;

⑤殘差圖中殘差點(diǎn)所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報(bào)精確度越高;

⑥甲、乙兩個(gè)模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

其中真命題的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線(xiàn)C1上的點(diǎn)均在C2:(x﹣5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線(xiàn)x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線(xiàn)C1的方程
(2)設(shè)P(x0 , y0)(y0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線(xiàn),分別于曲線(xiàn)C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線(xiàn)x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線(xiàn) =1(a,b>0)的兩頂點(diǎn)為A1 , A2 , 虛軸兩端點(diǎn)為B1 , B2 , 兩焦點(diǎn)為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點(diǎn)分別為A,B,C,D.則: (Ⅰ)雙曲線(xiàn)的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 為正實(shí)數(shù)

1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

2求證: ;

3)若函數(shù)且只有個(gè)零點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在送醫(yī)下鄉(xiāng)活動(dòng)中,某醫(yī)院安排3名男醫(yī)生和2名女醫(yī)生到三所鄉(xiāng)醫(yī)院工作,每所醫(yī)院至少安排一名醫(yī)生,且女醫(yī)生不安排在同一鄉(xiāng)醫(yī)院工作,則不同的分 配方法總數(shù)為( )
A.78
B.114
C.108
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F1,F2分別為橢圓C

(1)若橢圓C上的點(diǎn)

(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線(xiàn)段F1K的中點(diǎn)的軌跡方程;

(3)已知橢圓具有性質(zhì):若M,N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),當(dāng)直線(xiàn)PM,PN的斜率都存在,并記為kPM,kPN時(shí),那么kPM與kPN之積是與點(diǎn)P位置無(wú)關(guān)的定值,試寫(xiě)出雙曲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4及圓內(nèi)一點(diǎn)P(2,5).
(1)求過(guò)P點(diǎn)的弦中,弦長(zhǎng)最短的弦所在的直線(xiàn)方程;
(2)求過(guò)點(diǎn)M(5,0)與圓C相切的直線(xiàn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案