【題目】下列有關(guān)線性回歸分析的六個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);

④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于1;

⑤殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高;

⑥甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

其中真命題的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】B

【解析】分析:根據(jù)線性回歸方程的幾何體特征及殘差,相關(guān)指數(shù)的概論,逐一分析四個選項的正誤,可得結(jié)論.

詳解:①線性回歸直線必過樣本數(shù)據(jù)中心點,故①正確;

②回歸直線方程在散點圖中可能不經(jīng)過任意樣本數(shù)據(jù)點,故②錯誤;

③當(dāng)相關(guān)性系數(shù)時,則兩個變量正相關(guān),故③正確;

④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于1或,故④錯誤;

⑤殘差圖中殘差點所在的水平帶狀區(qū)域越窄,回歸方程的預(yù)報精確度越高,故⑤錯誤;

⑥甲、乙兩個模型的分別約為0.88和0.80,則模型甲的擬合效果更好,故⑥錯誤,

真命題的個數(shù)為,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣5:不等式選講
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集為{x|﹣2≤x≤1}.
(1)求a的值;
(2)若 恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)[選修4﹣1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.

(2)[選修4﹣2:矩陣與變換]
已知矩陣A的逆矩陣 ,求矩陣A的特征值.
(3)[選修4﹣4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)中,已知圓C經(jīng)過點P( ),圓心為直線ρsin(θ﹣ )=﹣ 與極軸的交點,求圓C的極坐標(biāo)方程.
(4)[選修4﹣5:不等式選講]
已知實數(shù)x,y滿足:|x+y|< ,|2x﹣y|< ,求證:|y|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)為何值時,.①有且僅有一個零點;②有兩個零點且均比-1大;

(2)若函數(shù)有4個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣1,0),B1,0),C0,1),直線yax+ba0)將ABC分割為面積相等的兩部分,則b的取值范圍是(  )

A.0,1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 ,過點的直線的參數(shù)方程為為參數(shù)),交于兩點

(1) 求的直角坐標(biāo)方程和的普通方程;

(2) 若,,成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.

(1)若學(xué)生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達式;

(2)為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時平均綜合費用為每平方米萬元

【解析】

由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;

設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時,每平方米建筑費用為萬元,

且樓房每升高一層,整層樓每平方米建筑費用提高萬元,

可得建筑第1層樓房每平方米建筑費用為:萬元.

建筑第1層樓房建筑費用為:萬元

樓房每升高一層,整層樓建筑費用提高:萬元

建筑第x層樓時,該樓房綜合費用為:

;

設(shè)該樓房每平方米的平均綜合費用為,

則:,

當(dāng)且僅當(dāng),即時,上式等號成立.

學(xué)校應(yīng)把樓層建成10層,此時平均綜合費用為每平方米萬元.

【點睛】

本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝店為慶祝開業(yè)三周年,舉行為期六天的促銷活動,規(guī)定消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,第五天該服裝店經(jīng)理對前五天中參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

4

6

10

23

22

1)若具有線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)預(yù)測第六天的參加抽獎活動的人數(shù)(按四舍五入取到整數(shù)).

參考公式與參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案