【題目】已知空間中三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)a=,b=.
(1)求向量a與向量b的夾角的余弦值;
(2)若ka+b與ka-2b互相垂直,求實(shí)數(shù)k的值
【答案】(1);(2)或.
【解析】
試題分析:(1)第一步,求出兩個(gè)向量的坐標(biāo),第二步,分別計(jì)算,和,最后代入公式;
(2)方法一,先得到和的坐標(biāo),然后代入數(shù)量積的坐標(biāo)表示,可得的值;
方法二,先計(jì)算()(),然后代入兩個(gè)向量的坐標(biāo)表示,求的值.
試題解析:解 (1)∵a=(1,1,0),b=(-1,0,2), ∴a·b=(1,1,0)·(-1,0,2)=-1,
又|a|==, |b|==,
∴cos〈a,b〉===-, 即向量a與向量b的夾角的余弦值為-.
(2)方法一 ∵ka+b=(k-1,k,2).ka-2b=(k+2,k,-4),且ka+b與ka-2b互相垂直,
∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=0, ∴k=2或k=-,
∴當(dāng)ka+b與ka-2b互相垂直時(shí),實(shí)數(shù)k的值為2或-.、
方法二 由(1)知|a|=,|b|=,a·b=-1,
∴(ka+b)·(ka-2b)=k2a2-ka·b-2b2=2k2+k-10=0, 得k=2或k=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的平面與平面AEB垂直,且∠ BAE=120°,AE=AB=4,AD=2,F,G,H分別為BE,AE,BC的中點(diǎn).
(1)求證:直線DE與平面FGH平行;
(2)若點(diǎn)P在直線GF上,且二面角D-BP-A的大小為,試確定點(diǎn)P的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,AC1和BD1相交于點(diǎn)O,則有( )
A. =2a2 B. a2
C. a2 D. =a2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,是不共面的三個(gè)向量,則能構(gòu)成一個(gè)基底的一組向量是( 。
A. 2,﹣,+2 B. 2,﹣,+2
C. ,2,﹣ D. ,+,﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三名工人加工同一種零件,他們?cè)谝惶熘械墓ぷ髑闆r如圖所示,其中Ai的橫、縱坐標(biāo)分別為第i名工人上午的工作時(shí)間和加工的零件數(shù),點(diǎn)Bi的橫、縱坐標(biāo)分別為第i名工人下午的工作時(shí)間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1 , Q2 , Q3中最大的是 .
②記pi為第i名工人在這一天中平均每小時(shí)加工的零件數(shù),則p1 , p2 , p3中最大的是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=,則異面直線AB1和BC1所成角的正弦值為( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10 cm,容器Ⅱ的兩底面對(duì)角線EG,E1G1的長(zhǎng)分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點(diǎn)A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長(zhǎng)度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點(diǎn)E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓, 為拋物線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線與軸交于.
(1)若,求過點(diǎn)的圓的切線方程;
(2)若,求△面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com