【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
【答案】解:∵函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx=﹣ sin2x﹣cos2x=2sin(2x+ )
(Ⅰ)f( )=2sin(2× + )=2sin =2,
(Ⅱ)∵ω=2,故T=π,
即f(x)的最小正周期為π,
由2x+ ∈[﹣ +2kπ, +2kπ],k∈Z得:
x∈[﹣ +kπ,﹣ +kπ],k∈Z,
故f(x)的單調(diào)遞增區(qū)間為[﹣ +kπ,﹣ +kπ],k∈Z.
【解析】利用二倍角公式及輔助角公式化簡函數(shù)的解析式,
(Ⅰ)代入可得:f( )的值.
(Ⅱ)根據(jù)正弦型函數(shù)的圖象和性質(zhì),可得f(x)的最小正周期及單調(diào)遞增區(qū)間
【考點(diǎn)精析】通過靈活運(yùn)用復(fù)合函數(shù)單調(diào)性的判斷方法和正弦函數(shù)的單調(diào)性,掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”;正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1﹣ax+lnx,(x>0),函數(shù)g(x)滿足g(x)=x﹣1,(x∈R).
(1)若函數(shù)f(x)在x=1時(shí)存在極值,求a的值;
(2)在(1)的條件下,當(dāng)x>1時(shí),blnx< ,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= cos(2x﹣ )﹣2sinxcosx.(13分)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求證:當(dāng)x∈[﹣ , ]時(shí),f(x)≥﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l、m,平面α、β,下列命題正確的是 ( )
A. l∥β,lαα∥β
B. l∥β,m∥β,lα,mαα∥β
C. l∥m,lα,mβα∥β
D. l∥β,m∥β,lα,mα,l∩m=Mα∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC=4,BC=2,點(diǎn)D為AB延長線上一點(diǎn),BD=2,連結(jié)CD,則△BDC的面積是 , com∠BDC= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線x2=y,點(diǎn)A(﹣ , ),B( , ),拋物線上的點(diǎn)P(x,y)(﹣ <x< ),過點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA||PQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間中三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)a=,b=.
(1)求向量a與向量b的夾角的余弦值;
(2)若ka+b與ka-2b互相垂直,求實(shí)數(shù)k的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣2x+ex﹣ ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com