8.方程x2+y2-2ax+2=0表示圓心為C(2,0)的圓,則圓的半徑r=$\sqrt{2}$.

分析 由已知條件求出a=2,由此能求出圓的半徑r.

解答 解:∵方程x2+y2-2ax+2=0表示圓心為C(2,0)的圓,
∴a=2,
∴圓的半徑r=$\frac{1}{2}\sqrt{16-8}$=$\sqrt{2}$,
故答案為$\sqrt{2}$.

點(diǎn)評(píng) 本題考查圓的半徑的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.質(zhì)地均勻的正四面體玩具的4個(gè)面上分別刻著數(shù)字1,2,3,4,將4個(gè)這樣的玩具同時(shí)拋擲于桌面上.
(1)求與桌面接觸的4個(gè)面上的4個(gè)數(shù)的乘積為偶數(shù)且不能被4整除的概率;
(2)設(shè)ξ為與桌面接觸的4個(gè)面上數(shù)字中偶數(shù)的個(gè)數(shù),求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f (x)是可導(dǎo)的函數(shù),且f′(x)<f(x)對(duì)于x∈R恒成立,則(  )
A.f(1)<ef(0),f(2016)>e2016f(0)B.f(1)>ef(0),f(2016)>e2016f(0)
C.f(1)>ef(0),f(2016)<e2016f(0)D.f(1)<ef(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow$=(-sinα,cosα),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+$\overrightarrow$,且$\overrightarrow{x}$•$\overrightarrow{y}$=0,
(1)求函數(shù)k=f(t)的表達(dá)式;
(2)若t∈[0,4],4f(t)-λ(t-1)+6>0恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,PA⊥PD,E,F(xiàn)分別為PC,BD的中點(diǎn).
(Ⅰ)求證:EF||平面PAD;
(Ⅱ)求三棱錐P-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點(diǎn)P(3,-2)的圓的標(biāo)準(zhǔn)方程,并化為圓的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線y=x2+1與兩坐標(biāo)軸及x=1所圍成的圖形的面積S為(  )
A.$\frac{1}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{a}_{n}-\sqrt{3}}{{\sqrt{3}a}_{n}+1}$(n∈N*),則a2010=( 。
A.-$\sqrt{3}$B.0C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.要得到$y=cos(4x-\frac{π}{3})$的圖象,只需將函數(shù)y=cos4x圖象( 。
A.向左平移$\frac{π}{12}$個(gè)單位B.向右平移$\frac{π}{12}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案