7.在一次英語考試中,考試的成績服從正態(tài)分布(100,36),那么考試成績在區(qū)間(88,112]內的概率是( 。
A.0.6826B.0.3174C.0.9544D.0.9974

分析 根據(jù)考生的成績服從正態(tài)分布(100,36),得到正態(tài)曲線關于x=100對稱,根據(jù)3σ原則知P(88<x<112)=P(100-2×6<x<100+2×6)=0.9544,得到結果.

解答 解:∵考生的成績服從正態(tài)分布(100,36),
∴正態(tài)曲線關于x=100對稱,且標準差為6,
根據(jù)3σ原則知P(88<x<112)=P(100-2×6<x<100+2×6)=0.9544,
故選:C.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,解題的關鍵是注意利用正態(tài)曲線的對稱性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.若tanα=$\frac{4}{3}$,則cos2α+sin2α=$\frac{33}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.從某中學高三年級中隨機抽取了6名男生,其身高和體重的數(shù)據(jù)如表所示:
編號123456
身高/cm170168178168176172
體重/kg656472616767
由以上數(shù)據(jù),建立了身高x預報體重y的回歸方程$\hat y$=0.80x-71.6.那么,根據(jù)上述回歸方程預報一名身高為175cm的高三男生的體重是(  )
A.80 kgB.71.6 kgC.68.4 kgD.64.8 kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)定義域為D的函數(shù)f(x),如果對x∈D,存在正數(shù)k,有|f(x)|≤k|x|成立,則稱函數(shù)f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):(1)f(x)=2x; (2)f(x)=sin(x+$\frac{π}{4}$);(3)f(x)=$\sqrt{x-1}$;(4)f(x)=$\frac{x}{{x}^{2}+x+1}$;其中是“倍約束函數(shù)”的是(  )
A.(1)(3)(4)B.(1)(2)C.(3)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.O為△ABC內一點,且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,$\overrightarrow{AD}$=t$\overrightarrow{AC}$,若B,O,D三點共線,則t的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.集合A={x|x≥1},B={x|x2<9},則A∩B=(  )
A.(1,3)B.[1,3)C.[1,+∞)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,已知圓G:x2+y2-2x-$\sqrt{2}$y=0經(jīng)過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F及上頂點B,過橢圓外一點(m,0)(m>a)且傾斜角為$\frac{5}{6}$π的直線l交橢圓于C,D兩點.
(I)求橢圓的方程;
(Ⅱ)若FC⊥FD,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知m≠0,向量$\overrightarrow a$=(m,3m),向量$\overrightarrow b$=(m+1,6),集合A={x|(x-m2)(x+m-2)=0}.
(1)判斷“$\overrightarrow a$∥$\overrightarrow b$”是“|${\overrightarrow a}$|=$\sqrt{10}$”的什么條件
(2)設命題p:若$\overrightarrow a$⊥$\overrightarrow b$,則m=-19,命題q:若集合A的子集個數(shù)為2,則m=1,判斷p∨q,p∧q,¬q的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調遞增,則滿足f(x)<f(3)的x的取值范圍是(-3,3).

查看答案和解析>>

同步練習冊答案