15.已知函數(shù)定義域?yàn)镈的函數(shù)f(x),如果對(duì)x∈D,存在正數(shù)k,有|f(x)|≤k|x|成立,則稱函數(shù)f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):(1)f(x)=2x; (2)f(x)=sin(x+$\frac{π}{4}$);(3)f(x)=$\sqrt{x-1}$;(4)f(x)=$\frac{x}{{x}^{2}+x+1}$;其中是“倍約束函數(shù)”的是( 。
A.(1)(3)(4)B.(1)(2)C.(3)(4)D.(2)(3)(4)

分析 對(duì)①f(x)=2x,易知存在k=2符合題意;對(duì)②特值即可解答;對(duì)③先假設(shè)存在k符合題意不等式,即可通過游離參數(shù)的方法找適合的k,從而獲得解答;對(duì)④有于分母能取到最小值故倒數(shù)能取到最大值,從而易找到正數(shù)k符合定義.

解答 解:∵對(duì)任意x∈D,存在正數(shù)k,都有|f(x)|≤k|x|成立
∴對(duì)任意x∈D,存在正數(shù)k,都有k≥$\frac{|f(x)|}{|x|}$成立.
對(duì)①,f(x)=2x,易知存在k=2符合題意;
對(duì)②,取特值如令x=$\frac{π}{4}$,則$\frac{|f(x)|}{|x|}$=$\frac{2}{|x|}$,不存在k≥$\frac{2}{|x|}$恒成立;
對(duì)③先假設(shè)存在k符合題意,即可得:存在正數(shù)k有:$\sqrt{x-1}$≤k|x|,
通過分離參數(shù)可知k≥$\frac{\sqrt{x-1}}{|x|}=\sqrt{\frac{x-1}{{x}^{2}}}$=$\sqrt{-\frac{1}{{x}^{2}}+\frac{1}{x}}$,
又$\sqrt{-\frac{1}{{x}^{2}}+\frac{1}{x}}$≤$\frac{1}{2}$,從而存在正數(shù)k符合題意;
對(duì)④,由于分母能取到最小值$\frac{3}{4}$,故倒數(shù)能取到最大值$\frac{4}{3}$,
從而易找到正數(shù)k=$\frac{4}{3}$符合定義.
故選:A.

點(diǎn)評(píng) 本題考查的是新定義問題與恒成立問題相結(jié)合的綜合類問題.正確理解題目中給的新定義是解決問題的關(guān)健.同時(shí)要掌握恒成立問題的解題方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是純虛數(shù),則tanθ=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.60°角的弧度數(shù)是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某居民小區(qū)擬將一塊三角形空地改造成綠地.經(jīng)測(cè)量,這塊三角形空地的兩邊長(zhǎng)分別為32m和68m,它們的夾角是30°.已知改造費(fèi)用為50元/m2,那么,這塊三角形空地的改造費(fèi)用為(  )
A.$27200\sqrt{3}$元B.$54400\sqrt{3}$元C.27200元D.54400元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.?dāng)?shù)列{an}中,a1=1,an-an+1=anan+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)Sn為{an}的前n項(xiàng)和,bn=S2n-Sn,求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=x2+bx+c的兩個(gè)零點(diǎn)為1,3.
(1)求b,c;
(2)當(dāng)x∈[1,4]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在一次英語(yǔ)考試中,考試的成績(jī)服從正態(tài)分布(100,36),那么考試成績(jī)?cè)趨^(qū)間(88,112]內(nèi)的概率是( 。
A.0.6826B.0.3174C.0.9544D.0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f(x)=$\frac{3x+1}{x-1}$的值域是(-∞,3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.現(xiàn)有6道題,其中3道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.試求:
(I)所取的2道題都是甲類題的概率;
(II)所取的2道題不是同一類題的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案